Best Harmonic and Superharmonic *L*¹-Approximants in Strips

David H. Armitage

Department of Pure Mathematics, Queen's University, Belfast BT7 1NN, Northern Ireland E-mail: d.armitage@qub.ac.uk

and

Stephen J. Gardiner

Department of Mathematics, University College Dublin, Dublin 4, Ireland E-mail: stephen.gardiner@ucd.ie

Communicated by Manfred v. Golitschek

Received September 15, 1997; accepted November 5, 1998

Let Ω denote the open strip $(-1, 1) \times \mathbb{R}^{n-1}$, where $n \ge 2$. We completely solve the problem of characterizing a best harmonic L^1 -approximant to a subharmonic function *s* on Ω (all functions are assumed to be continuous and integrable on $\overline{\Omega}$). This characterization was previously known only under highly restrictive hypotheses on *s*. The approach of this paper is based, in part, on ideas used recently to solve the corresponding problem for the unit ball. However, the unboundedness of Ω presents difficulties which require the use of new techniques and recent results from other branches of harmonic approximation theory. Superharmonic L^1 -approximation of subharmonic functions is also treated. © 1999 Academic Press

1. INTRODUCTION AND RESULTS

For certain special domains ω in \mathbb{R}^n $(n \ge 2)$ several authors (see [2, 3, 5, 9, 10]) have sought to characterize best harmonic approximants, in the L^1 -norm, to subharmonic functions on ω (all functions are assumed to be continuous on $\overline{\omega}$). However, it was only very recently [2] that a complete characterization was found, even in the simplest case where ω is the unit ball. The purpose of this paper is to obtain results analogous to those in [2] for an *n*-dimensional strip. It turns out that, because we are now working with an unbounded domain, implementation of the strategy in [2] requires much more powerful techniques; in particular, we need to use recent results from other branches of harmonic approximation theory.

0021-9045/99 \$30.00 Copyright © 1999 by Academic Press All rights of reproduction in any form reserved.

To proceed further, we introduce some notation. Let $\mathscr{H}(\omega)$, $\mathscr{S}(\omega)$, and $\mathscr{U}(\omega)$ denote respectively the collections of harmonic, subharmonic, and superharmonic functions on ω . If $f \in L^1(\omega)$, then we define $||f||_1 = \int_{\omega} |f|$, where the integral is with respect to *n*-dimensional Lebesgue measure λ . A function $h^* \in C(\bar{\omega}) \cap \mathscr{H}(\omega)$ which satisfies

$$\|f - h^*\|_1 \leq \|f - h\|_1$$
 for all $h \in C(\bar{\omega}) \cap \mathscr{H}(\omega)$

is called a *best harmonic* L^1 -approximant to f on $\overline{\omega}$. Similarly, a function $u^* \in C(\overline{\omega}) \cap \mathcal{U}(\omega)$ which satisfies

$$||f-u^*||_1 \leq ||f-u||_1$$
 for all $u \in C(\bar{\omega}) \cap \mathscr{U}(\omega)$

is called a *best superharmonic* L^1 -approximant to f on $\overline{\omega}$. Let B denote the open unit ball in \mathbb{R}^n and let B_0 be the open ball of centre 0 and radius $2^{-1/n}$. Thus $\lambda(B_0) = \lambda(B)/2$. The main result of [2] is as follows.

THEOREM A. Let $s \in C(\overline{B}) \cap \mathscr{S}(B)$ and $h^* \in C(\overline{B}) \cap \mathscr{H}(B)$. Then h^* is a best harmonic L^1 -approximant to s on \overline{B} if and only if

- (i) $h^* = s \text{ on } \partial B_0$, and
- (ii) $h^* \leq s \text{ on } \overline{B} \setminus B_0$.

It was also shown in [2] that a best superharmonic L^1 -approximant to a given subharmonic function is necessarily harmonic. Below we will establish analogues of these results for an *n*-dimensional strip.

Let $\Omega(k) = (-k, k) \times \mathbb{R}^{n-1}$ for each positive number k; let $\Omega = \Omega(1)$ and $\Omega_0 = \Omega(1/2)$. It will also be convenient to write

$$\begin{aligned} \mathscr{H} &= C(\bar{\Omega}) \cap L^{1}(\Omega) \cap \mathscr{H}(\Omega), \qquad \mathscr{S} = C(\bar{\Omega}) \cap L^{1}(\Omega) \cap \mathscr{S}(\Omega), \\ \mathscr{U} &= C(\bar{\Omega}) \cap L^{1}(\Omega) \cap \mathscr{U}(\Omega). \end{aligned}$$

THEOREM 1. Let $s \in \mathcal{S}$ and $h^* \in \mathcal{H}$. Then h^* is a best harmonic L^1 -approximant to s on $\overline{\Omega}$ if and only if

(i)
$$h^* = s \text{ on } \partial \Omega_0$$
, and

(ii) $h^* \leq s \text{ on } \overline{\Omega} \setminus \Omega_0$.

We note that Theorem 1 was proved in [5] under the additional and very strong hypotheses that $s \in C^2(\Omega)$ and that $\Delta s > 0$ almost everywhere. The corollaries below follow easily from Theorem 1.

COROLLARY 1. Let $s \in \mathcal{S}$. If s has a best harmonic L^1 -approximant h^* on $\overline{\Omega}$, then h^* is unique, and $s \leq h^*$ on Ω_0 .

COROLLARY 2. If $s \in \mathcal{S}$ and the best harmonic L^1 -approximant h^* to s on $\overline{\Omega}$ exists, then

$$||s-h^*||_1 = \int_{\Omega} s - 2 \int_{\Omega_0} s.$$

COROLLARY 3. Let s_j belong to \mathscr{S} (j=1,2) and let h_j^* be the best harmonic L^1 -approximant to s_j on $\overline{\Omega}$. Then

- (i) $h_1^* + h_2^*$ is the best harmonic L^1 -approximant to $s_1 + s_2$ on $\overline{\Omega}$, and
- (ii) $||s_1 h_1^*||_1 \le ||s_1 + s_2 (h_1^* + h_2^*)||_1$.

THEOREM 2. Let $s \in \mathscr{S}$ and $u^* \in \mathscr{U}$. Then u^* is a best superharmonic L^1 -approximant to s on $\overline{\Omega}$ if and only if u^* is the best harmonic L^1 -approximant to s on $\overline{\Omega}$.

The paper is organized as follows. The central part of the proof of Theorem 1 is contained in a proposition which we state and prove in Section 2. Theorem 1 and its corollaries are then deduced in Section 3, and Theorem 2 is proved in Section 4.

2. A KEY RESULT

2.1. For any function $f: \overline{\Omega} \to \mathbb{R}$ we define

$$\begin{split} E_{+}(f) &= \big\{ x \in \overline{\Omega} : f(x) > 0 \big\}, \\ E_{-}(f) &= \big\{ x \in \overline{\Omega} : f(x) < 0 \big\}, \\ E_{0}(f) &= \big\{ x \in \overline{\Omega} : f(x) = 0 \big\}. \end{split}$$

When there is no risk of ambiguity, we write E_+ for $E_+(f)$, etc. The purpose of Section 2 is to prove the following proposition which forms the core of the proof of Theorem 1.

PROPOSITION. Let $s \in \mathcal{S}$ and suppose that 0 is a best harmonic L^1 -approximant to s on $\overline{\Omega}$. The following are equivalent:

- (a) $s \ge 0$ on $\overline{\Omega}$,
- (b) $\overline{\Omega}_0 \subseteq E_0(s)$.

2.2. We begin by assembling some basic material. If $f: \overline{\Omega} \to \mathbb{R}$, then we write $f^+ = \max\{f, 0\}$. If f is integrable with respect to (n-1)-dimensional Lebesgue measure λ' on a hyperplane $\{t\} \times \mathbb{R}^{n-1}$, then we define

$$\mathscr{M}(f, t) = \int_{\mathbb{R}^{n-1}} f(t, x') \, d\lambda'(x').$$

It is well known (see, for example, [1]) that if $h \in \mathcal{H}$, then h is λ' -integrable on $\{t\} \times \mathbb{R}^{n-1}$ for each $t \in (-1, 1)$ and $\mathcal{M}(h, \cdot)$ is an affine function on (-1, 1). From this it follows immediately that

$$\int_{\Omega(k)} h = 2k \mathcal{M}(h, 0) \qquad (h \in \mathcal{H}; 0 < k \leq 1).$$

$$(2.1)$$

This analogue of the standard mean value property of harmonic functions on a ball will be used repeatedly, as will the following lemma.

LEMMA 1. Let $s \in \mathcal{S}$ and $h^* \in \mathcal{H}$. The following are equivalent:

- (a) h^* is a best harmonic L^1 -approximant to s on $\overline{\Omega}$;
- (b) for every $h \in \mathcal{H}$,

$$\int_{E_{-}(s-h^{*})} h - \int_{E_{+}(s-h^{*})} h + \int_{E_{0}(s-h^{*})} |h| \ge 0;$$
(2.2)

(c) for every $h \in \mathcal{H}$,

$$\int_{E_0(s-h^*)} h^+ + \int_{E_-(s-h^*)} h \ge \mathcal{M}(h,0).$$
(2.3)

The equivalence of (a) and (b) is a special case of [12, Theorem 4.5.3] (or see [14, Theorem 1.7]). The equivalence of (b) and (c) is proved as follows. Adding $2\mathcal{M}(h, 0)$ to each side of (2.2) and using (2.1) with k = 1, we find that (2.2) is equivalent to

$$2\mathcal{M}(h,0) \leq \int_{E_0} |h| + \int_{E_0} h + 2 \int_{E_-} h = 2 \int_{E_0} h^+ + 2 \int_{E_-} h,$$

which is equivalent to (2.3).

Next we give a simple maximum principle. We claim no originality for it, but it is easier to give a proof than an exact reference. LEMMA 2. Let ω be an open subset of Ω . If $s \in C(\bar{\omega}) \cap L^1(\omega) \cap \mathscr{S}(\omega)$ and $s \leq 0$ on $\partial \omega$, then $s \leq 0$ on ω . Further, if ω is connected, then either s < 0on ω or s = 0 on ω .

To see this, define S to be equal to s^+ on ω and 0 on $\mathbb{R}^n \setminus \omega$. Then $S \in \mathscr{S}(\mathbb{R}^n)$, so

$$S(x) \leq \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} S \leq \frac{1}{\lambda(B(x,r))} \int_{\omega} s^+ \to 0 \qquad (r \to +\infty),$$

where B(x, r) denotes the open ball of centre x and radius r in \mathbb{R}^n . The stronger conclusion when ω is connected follows from the classical maximum principle.

2.3. The lemma below will be used to prove that (a) implies (b) in the proposition.

LEMMA 3. Let F be a proper closed subset of $\overline{\Omega}$ such that each component of $\mathbb{R}^n \setminus F$ meets $\mathbb{R}^n \setminus \overline{\Omega}$. If $y_0 \in \Omega \cap \partial F$, a > 1, and $h \in L^1(\Omega(a)) \cap \mathcal{H}(\Omega(a) \setminus \{y_0\})$, then for every $\varepsilon > 0$ there exists $H \in \mathcal{H}(\mathbb{R}^n)$ such that

$$\int_{F} |h - H| < \varepsilon. \tag{2.4}$$

For each $y \in \mathbb{R}^n$ let $h_y(x) = h(x+y)$. If ||y|| < a-1, then $h_y \in \mathscr{H}(\Omega \setminus \{y_0 - y\})$. We first claim that

$$\int_{\bar{\Omega}} |h - h_y| \to 0 \qquad (y \to 0). \tag{2.5}$$

To see this, let $\eta > 0$. Since $h \in L^1(\Omega(a))$, there exist positive numbers *r* and *R* such that $B(y_0, r) \subseteq \Omega \cap B(0, R)$ and

$$\int_{B(y_0,r)} |h_y| < \eta/6, \qquad \int_{\overline{\Omega} \setminus \overline{B(0,R)}} |h_y| < \eta/6$$
(2.6)

whenever ||y|| is sufficiently small. On the compact set $(\overline{\Omega} \cap \overline{B(0, R)}) \setminus B(y_0, r) = T$, say, the functions h_y are uniformly bounded for small values of ||y||, and they converge pointwise to h as $||y|| \to 0$. Hence, if ||y|| is sufficiently small,

$$\int_{T} |h - h_{y}| < \eta/3.$$
 (2.7)

If both (2.6) and (2.7) hold, then

$$\int_{\bar{\Omega}} |h - h_y| < \eta.$$

This establishes (2.5).

Since $y_0 \in \Omega \cap \partial F$, it follows from (2.5) that there exists $y_1 \in \Omega \setminus F$ such that the function $H_0 = h_{y_0 - y_1}$ is harmonic on $\Omega(b) \setminus \{y_1\}$, where b = (a+1)/2, and satisfies

$$\int_{\overline{\Omega}} |h - H_0| < \varepsilon/2. \tag{2.8}$$

Let ω_0 be the component of $\mathbb{R}^n \setminus F$ which contains y_1 . By hypothesis, ω_0 meets $\mathbb{R}^n \setminus \overline{\Omega(b)}$. Let ω_1 be a bounded open connected set such that $y_1 \in \omega_1$, $\overline{\omega}_1 \subset \omega_0$, and $\omega_1 \setminus \overline{\Omega(b)} \neq \emptyset$, and define $E = \overline{\Omega} \setminus \omega_1$. Then *E* is closed and H_0 is harmonic on a neighbourhood of *E*. Also, the complement of *E* in the one-point compactification of \mathbb{R}^n is connected and locally connected. It now follows from [4, Theorem 1.1] (or see [8, Corollary 5.10]) that if *d* is a positive constant, then there exists $H \in \mathscr{H}(\mathbb{R}^n)$ such that

$$|H(x) - H_0(x)| < d(1 + ||x||)^{-n-1} \qquad (x \in E).$$

Since $H_0 \in L^1(\Omega(a))$, we have $H \in L^1(\Omega(a))$. By choosing d small enough, we can therefore arrange that

$$\int_{E} |H - H_0| < \varepsilon/2. \tag{2.9}$$

Since $F \subseteq E \subseteq \overline{\Omega}$, (2.4) follows from (2.8) and (2.9).

2.4. We can now prove that (a) implies (b) in the proposition. Suppose that 0 is a best harmonic L^1 -approximant to s and that $s \ge 0$ on $\overline{\Omega}$. We write $E_0 = E_0(s)$ and define a number τ_1 as follows: if E_0 contains no strip $\Omega(t)$, then $\tau_1 = 0$; otherwise define $\tau_1 = \sup \{t: \Omega(t) \subseteq E_0\}$. We have to show that $\tau_1 \ge 1/2$. Suppose, to the contrary, that $\tau_1 < 1/2$, and let τ_2 be such that $\max\{\tau_1, 1/3\} < \tau_2 < 1/2$. Define F_0 to be the union of the set $E_0 \cup \overline{\Omega(\tau_2)}$ with all the components of $\mathbb{R}^n \setminus (E_0 \cup \overline{\Omega(\tau_2)})$ that are contained in Ω . We claim that

$$\partial F_0 \cap (\partial \Omega(\tau_2) \backslash E_0) \neq \emptyset. \tag{2.10}$$

To verify (2.10), observe first that

$$\partial F_0 \subseteq \partial (E_0 \cup \overline{\Omega(\tau_2)}) \subseteq \partial E_0 \cup \partial \Omega(\tau_2).$$

Hence, if (2.10) is false, $\partial F_0 \subseteq \partial E_0$ and therefore s = 0 on ∂F_0 , so that by Lemma 2, s = 0 on $(F_0)^\circ$. We now have s = 0 on F_0 , so that $\Omega(\tau_2) \subseteq F_0 \subseteq E_0$ and $\tau_2 \leq \tau_1$, contrary to our choice of τ_2 . This establishes (2.10).

Now choose a point $y_0 \in \partial F_0 \cap (\partial \Omega(\tau_2) \setminus E_0)$. Define *P* to be the Poisson kernel of $\Omega(\tau_2)$, with pole at y_0 , normalized so that $\mathcal{M}(P, 0) = 1$, and extended by repeated reflection to be harmonic on \mathbb{R}^n , except for a sequence of singularities. (For properties of *P* we refer to [6]. The extension is possible since $P(x) \to 0$ as $x \to y$ for each $y \in \partial \Omega(\tau_2) \setminus \{y_0\}$.) Also, since $\tau_2 > 1/3$, none of the singularities of *P*, except y_0 , lies in $\overline{\Omega}$. We note that

$$\begin{split} P \in L^1(\Omega(a)) \cap \mathscr{H}(\Omega(a) \setminus \{y_0\}) & \text{for some} \quad a > 1, \\ P > 0 & \text{on } \Omega(\tau_2), \\ P < 0 & \text{on } \overline{\Omega} \setminus \overline{\Omega(\tau_2)}. \end{split}$$

Let $0 < \varepsilon < (1 - 2\tau_2)/4$. Then $\varepsilon < 1/12 < \tau_2$. Since F_0 is a closed subset of $\overline{\Omega}_0$, and since $\mathbb{R}^n \setminus F_0$ consists of those components of $\mathbb{R}^n \setminus (E_0 \cup \overline{\Omega(\tau_2)})$ that meet $\mathbb{R}^n \setminus \overline{\Omega}$, we can apply Lemma 3 to obtain $H \in \mathscr{H}$ such that

$$\int_{F_0} |P - H| < \varepsilon. \tag{2.11}$$

Since $\Omega(\tau_2) \subseteq F_0$, we have (see (2.1))

$$|\mathcal{M}(P,0) - \mathcal{M}(H,0)| \leq \frac{1}{2\tau_2} \int_{\Omega(\tau_2)} |P - H| < \frac{\varepsilon}{2\tau_2} < \frac{1}{2}.$$
 (2.12)

Since $\mathcal{M}(P, 0) = 1$, it follows that

$$\mathcal{M}(H,0) > \frac{1}{2}.$$
 (2.13)

On $F_0 \setminus \overline{\Omega(\tau_2)}$ we have H < H - P and hence $H^+ \leq (H - P)^+ \leq |H - P|$. Also, $H^+ \leq |H| \leq |H - P| + P$ on $\Omega(\tau_2)$. Since $E_0 \cup \Omega(\tau_2) \subseteq F_0$, we obtain

$$\begin{split} \int_{E_0} H^+ \leqslant & \int_{F_0 \backslash \mathcal{Q}(\tau_2)} |H-P| + \int_{\mathcal{Q}(\tau_2)} |H-P| + \int_{\mathcal{Q}(\tau_2)} P \\ & = \int_{F_0} |H-P| + \int_{\mathcal{Q}(\tau_2)} P \\ & < \varepsilon + 2\tau_2 \mathscr{M}(P,0), \end{split}$$

by (2.11) and (2.1). Using (2.12), our choice of ε , and (2.13), we obtain

$$\begin{split} \int_{E_0} H^+ &< \varepsilon + 2\tau_2(|\mathcal{M}(P,0) - \mathcal{M}(H,0)| + \mathcal{M}(H,0)) \\ &< 2\varepsilon + 2\tau_2 \mathcal{M}(H,0) \\ &< (1 - 2\tau_2)(\frac{1}{2} - \mathcal{M}(H,0)) + \mathcal{M}(H,0) \\ &< \mathcal{M}(H,0). \end{split}$$

This contradicts (2.3). Hence $\tau_1 \ge 1/2$, as required.

2.5. In order to prove the converse implication in the proposition we need the following lemma.

LEMMA 4. Let F be a proper closed subset of \mathbb{R}^n , let 1 , and $suppose that <math>h \in L^p(F) \cap \mathcal{H}(F^o)$. Then, for each $\varepsilon > 0$, there exists a function H, harmonic on \mathbb{R}^n except for isolated singularities in $\mathbb{R}^n \setminus F$, such that

$$\int_F |h-H| < \varepsilon.$$

To prove this, let $1 < q < \min\{p, n/(n-1)\}$ and define $F_k = F \cap \overline{B(0, k)}$ for k = 1, 2, ... By a theorem of Hedberg [11] (see also [13]), for each k there is a harmonic function h_k on a neighbourhood of F_k such that

$$\int_{F_k} |h_k - h| \leqslant \left(\int_{F_k} |h_k - h|^q\right)^{1/q} (\lambda(F_k))^{(q-1)/q} < \varepsilon.$$

It now follows from [4, Theorem 1.4] (or rather, from its proof) that there is a function H with the stated properties.

2.6. We now prove that (b) implies (a) in the proposition. Suppose that 0 is a best harmonic L^1 -approximant to s and that $\overline{\Omega}_0 \subseteq E_0(s)$. We write $E_+ = E_+(s)$, etc. Observe first that

$$(E_0 \cup E_-)^\circ = E_0^\circ \cup E_-, \tag{2.14}$$

for if there were a point y_0 of ∂E_0 in $(E_0 \cup E_-)^\circ$, then the mean value inequality for the subharmonic function *s* would fail for small balls centred at y_0 .

We now suppose that $E \neq \emptyset$ and show that this leads to a contradiction. Let $\partial^{\infty} E_{-}$ denote the boundary of E_{-} in the one-point compactification $\mathbb{R}^{n} \cup \{\infty\}$ of \mathbb{R}^{n} and let μ_{x} be harmonic measure on $\partial^{\infty} E_{-}$ relative to a point x of E_{-} . Note that, if $\infty \in \partial^{\infty} E_{-}$, then $\mu_{x}(\{\infty\}) = 0$ for each $x \in E_{-}$. To see this, take a positive harmonic function g on Ω such that $g(y) \to +\infty$ as $y \to \infty$, and observe that $\mu_x(\{\infty\}) < \varepsilon g(x)$ for all $\varepsilon > 0$. (An example of such a function g is given by

$$g(x_1, ..., x_n) = \cos x_1 \cosh \frac{x_2}{\sqrt{(n-1)}} \cdots \cosh \frac{x_n}{\sqrt{(n-1)}}.$$

It follows that $\mu_x(\partial E_-) = 1$ for each $x \in E_-$.

Let K(r) be the compact cylinder given by

$$K(r) = \{(t, x') \in [-1, 1] \times \mathbb{R}^{n-1} : ||x'|| \leq r\} \qquad (r > 0).$$

Since $\mu_x(\partial E_-) > 0$ for each $x \in E_-$, there is a number r_0 such that $\mu_x(K(r_0) \cap \partial E_-) > 0$ for some $x \in E_-$. Define $w(x) = \mu_x(K(r_0) \cap \partial E_-)$ for each $x \in E_-$ and define w = 0 on $\Omega \setminus E_-$. Then w is harmonic on E_- and $w(x) \to 0$ as $x \to y$ for every $y \in \partial E_- \setminus K(r_0)$ that is regular for the Dirichlet problem on E_- . Since the set of all irregular boundary points is polar, it follows that the function w^* , defined by

$$w^*(y) = \limsup_{x \to y} w(x) \qquad (y \in \Omega),$$

is subharmonic on $\Omega \setminus (\partial E_{-} \cap K(r_0))$ (see, for example, [7, p. 60]). Clearly

$$0 \leqslant w^* \leqslant 1 \qquad \text{on } \Omega \tag{2.15}$$

and

$$\lim_{x \to y} w^*(x) = 0 \qquad (y \in \partial^\infty \Omega \setminus K(r_0)).$$
(2.16)

We define

$$F_r = E_0 \cup E_- \cup (\overline{\Omega} \setminus (K(r))^\circ) \qquad (r > r_0),$$

and note from (2.14) that $w^* \in \mathscr{S}((F_r)^\circ)$. Let h_r denote the least harmonic majorant of w^* on $(F_r)^\circ$, and let $h_r = 0$ on $\overline{\Omega} \setminus (F_r)^\circ$. We need to establish the following:

- (a) $h_r \in L^p(\overline{\Omega})$ for each $p \ge 1$;
- (β) $h_r(x)$ is a decreasing function of r for each $x \in (E_0 \cup E_-)^\circ$;
- (γ) $h_r(x) \to 0$ as $r \to +\infty$ for each $x \in (E_0)^\circ$.

To prove (α), let G denote the Green function for $\Omega(2)$ with pole 0, choose a constant c such that $cG \ge 1$ on $K(r_0)$, and define $U = \min\{1, cG\}$

on $\overline{\Omega}$. Then $U \in C(\overline{\Omega}) \cap \mathcal{U}(\Omega)$ and U > 0 on Ω . On $K(r_0)$ we have $0 \leq w^* \leq 1 = U$. From (2.15), (2.16), and the maximum principle, it follows that $w^* \leq U$ on $\Omega \setminus K(r_0)$. Hence U is a superharmonic majorant of w^* on Ω , which contains $(F_r)^\circ$, and so $0 \leq w^* \leq h_r \leq U$ on $(F_r)^\circ$. Since G(x) decays exponentially as $x \to \infty$ (see [6]), (α) now follows.

To prove (β) we simply note that F_r decreases as r increases.

To prove (γ) , we define u_r on $(F_r)^\circ$ by

$$u_r = \inf\{u \in \mathcal{U}((F_r)^\circ) : u > 0 \text{ on } (F_r)^\circ \text{ and } u \ge 1 \text{ on } E_- \cup (\Omega \setminus K(r))\}$$

and let \hat{u}_r be the balayage given by

$$\hat{u}_r(y) = \min\{u_r(y), \liminf_{x \to y} u_r(x)\} \qquad (y \in (F_r)^\circ).$$

Then \hat{u}_r is a superharmonic majorant of w^* on $(F_r)^\circ$, and so $h_r \leq u_r$ on $(E_0 \cap K(r))^\circ$. Hence, in view of (2.14), if $x \in (E_0)^\circ$ and ||x|| < r, we have $h_r(x) \leq v_r(x)$, where $v_r(y)$ is the harmonic measure of the set $E_0 \cap \overline{\partial K(r) \cap \Omega}$ at a point $y \in (E_0 \cap K(r))^\circ$. Since $v_r(x) \to 0$ as $r \to +\infty$ for each $x \in (E_0)^\circ$, the claim (γ) is proved.

From (α), (β), (γ), and dominated convergence, it now follows that

$$\int_{E_0} h_r \to 0 \qquad (r \to +\infty). \tag{2.17}$$

Let

$$\varepsilon = \frac{1}{8} \int_{E_{-}} w. \tag{2.18}$$

Since w is non-negative, harmonic, and not identically 0 on E_{-} , we see that $\varepsilon > 0$. By (2.17) we can choose $r_1 > r_0$ such that

$$\int_{E_0} h_{r_1} < \varepsilon. \tag{2.19}$$

Define $h_0 = -h_{r_1}$ and $F = F_{r_1}$. By (α), $h_0 \in L^p(F)$ for each $p \ge 1$, and $h_0 \in \mathscr{H}(F^\circ)$ by definition. Hence, by Lemma 4, there exists a function *H*, harmonic on \mathbb{R}^n apart from isolated singularities in $\mathbb{R}^n \setminus F$, such that

$$\int_{F} |h_0 - H| < \varepsilon. \tag{2.20}$$

Since $\overline{\Omega} \setminus (K(r_1))^{\circ} \subseteq F$, only finitely many singularities of *H* lie in $\overline{\Omega}$. Each singularity in $\overline{\Omega} \setminus F$ lies in E_+ . By Lemma 2 and the continuity of *s*, every

component of E_+ meets $\partial \Omega$. It now follows from [4, Lemma 4.1] that there exists a harmonic function h on a neighbourhood of $\overline{\Omega}$ such that

$$\int_{E_0 \cup E_-} |H - h| < \varepsilon. \tag{2.21}$$

In fact, the range of integration $E_0 \cup E_-$ in (2.21) can be replaced by $\overline{\Omega} \setminus L$, where *L* is some bounded subset of E_+ . With this modification, it follows from (2.20), (2.21), and property (α) that $h \in L^1(\overline{\Omega})$, and so $h \in \mathcal{H}$.

Since $\Omega_0 \subseteq E_0$, we see from (2.1) and (2.19) that

$$|\mathcal{M}(h_0,0)| = \left| \int_{\Omega_0} h_0 \right| = \int_{\Omega_0} h_{r_1} < \varepsilon.$$
(2.22)

Since $h - h_0 \in \mathscr{H}(\Omega_0)$, it follows from (2.1), (2.20), and (2.21) that

$$|\mathcal{M}(h,0) - \mathcal{M}(h_0,0)| = \left| \int_{\Omega_0} h - h_0 \right| < 2\varepsilon.$$
(2.23)

From (2.19)–(2.21),

$$\int_{E_0} h^+ \leq \int_{E_0} |h| \leq \int_{E_0} |h - h_0| + \int_{E_0} |h_0| < 3\varepsilon.$$
 (2.24)

Finally, since $h_{r_1} \ge w^* = w$ on E_- , we have $h_0 \le -w$ on E_- and so

$$\begin{split} \int_{E_0} h^+ + \int_{E_-} h < 3\varepsilon + \int_{E_-} (h - h_0 - w) & \text{(by (2.24))} \\ & \leq 3\varepsilon + \int_{E_-} |h - h_0| - \int_{E_-} w \\ & < 3\varepsilon + 2\varepsilon - 8\varepsilon & \text{(by (2.20), (2.21), (2.18))} \\ & < \mathscr{M}(h, 0) & \text{(by (2.22), (2.23)).} \end{split}$$

This contradicts (2.3). Hence $E_{-} = \emptyset$.

3. PROOF OF THEOREM 1 AND COROLLARIES

3.1. We begin with the sufficiency of conditions (i) and (ii) in Theorem 1. Note first that, if $h \in \mathcal{H}$, then

$$\int_{\Omega} h = 2\mathcal{M}(h, 0) = 2 \int_{\Omega_0} h$$

by (2.1), and so

$$\int_{\Omega \setminus \Omega_0} h = \int_{\Omega_0} h. \tag{3.1}$$

277

Now suppose that (i) and (ii) hold. By Lemma 2, applied to $s - h^*$, either

- (I) $s-h^*=0$ on Ω_0 , or
- (II) $s-h^* < 0$ on Ω_0 .

Let $E_+ = E_+(s - h^*)$, etc. If (I) holds, then $E_+ \subseteq \overline{\Omega} \setminus \Omega_0$ and $E_- = \emptyset$ by (ii), so that for every $h \in \mathcal{H}$,

$$\begin{split} \int_{E_{-}} h - \int_{E_{+}} h + \int_{E_{0}} |h| &= -\int_{E_{+}} h + \int_{E_{0} \backslash \Omega_{0}} |h| + \int_{\Omega_{0}} |h| \\ &\geqslant - \int_{E_{+}} h - \int_{E_{0} \backslash \Omega_{0}} h + \int_{\Omega_{0}} |h| \\ &= -\int_{\overline{\Omega} \backslash \Omega_{0}} h + \int_{\Omega_{0}} |h| \geqslant 0, \end{split}$$

by (3.1). Hence (2.2) holds.

If (II) holds, then $E_{-} = \Omega_0$ by (ii). Hence, for every $h \in \mathcal{H}$,

$$-\int_{E_-}h=-\int_{E_+\,\cup\,E_0}h\leqslant -\int_{E_+}h+\int_{E_0}|h|,$$

by (3.1), and again (2.2) holds.

It now follows from Lemma 1 that h^* is a best harmonic L^1 -approximant to s.

3.2. It remains to demonstrate the necessity of (i) and (ii). Let h^* be a best harmonic L^1 -approximant to s. By considering $s - h^*$ instead of s, we may suppose that 0 is a best harmonic L^1 -approximant to s. Clearly $E_0(s^+) = E_0(s) \cup E_-(s), E_+(s^+) = E_+(s)$ and $E_-(s^+) = \emptyset$. Thus, for each $h \in \mathcal{H}$,

$$\begin{split} \int_{E_{-}(s^{+})} h - \int_{E_{+}(s^{+})} h + \int_{E_{0}(s^{+})} |h| &= -\int_{E_{+}(s)} h + \int_{E_{-}(s)} |h| + \int_{E_{0}(s)} |h| \\ &\geqslant -\int_{E_{+}(s)} h + \int_{E_{-}(s)} h + \int_{E_{0}(s)} |h| \\ &\geqslant 0, \end{split}$$

by Lemma 1. Hence, again by Lemma 1, the function 0 is a best harmonic L^1 -approximant to $s^+ \in \mathscr{S}$. By the implication "(a) \Rightarrow (b)" in the proposition, applied to s^+ ,

$$\overline{\Omega}_0 \subseteq E_0(s^+) = E_0(s) \cup E_-(s).$$

In particular, $s \leq 0$ on $\partial \Omega_0$. Hence, by Lemma 2, either

- (I) s = 0 on Ω_0 , or
- (II) s < 0 on Ω_0 .

In case (I) we apply the implication "(b) \Rightarrow (a)" in the proposition to see that $s \ge 0$ on $\overline{\Omega}$, so conditions (i) and (ii) hold.

To deal with case (II), choose $h \in \mathcal{H}$ so that $\mathcal{M}(h, t) = -1$ for each $t \in (-1, 1)$; for example, we can take h to be a suitable multiple of the Poisson kernel for $(-2, +\infty) \times \mathbb{R}^{n-1}$ with pole (-2, 0, ..., 0):

$$h(t, x') = -ct \{ \|x'\|^2 + (t+2)^2 \}^{-n/2} \qquad (t > -2; x' \in \mathbb{R}^{n-1}).$$

Applying (2.2) with $h^* = 0$ we obtain

$$-1 = \int_{\varOmega_0} h \geqslant \int_{E_-(s)} h \geqslant \int_{E_+(s) \cup E_0(s)} h \geqslant \int_{\Omega \setminus \Omega_0} h = -1,$$

so that equality holds throughout. Hence $s \ge 0$ almost everywhere on $\overline{\Omega} \setminus \Omega_0$, and therefore, by continuity, $s \ge 0$ on $\overline{\Omega} \setminus \Omega_0$. Since s < 0 on Ω_0 , we have s = 0 on $\partial \Omega_0$ by continuity. Thus (i) and (ii) again hold.

3.3. Corollary 1 follows easily, since by Theorem 1 any two best harmonic L^1 -approximants to $s \in \mathscr{S}$ must agree on $\partial \Omega_0$, and hence on Ω_0 by Lemma 2, and thus on all of $\overline{\Omega}$. Also, if h^* is the best harmonic L^1 -approximant to s, then $s - h^* = 0$ on $\partial \Omega_0$, and hence $s - h^* \leq 0$ on Ω_0 by Lemma 2 again.

To prove Corollary 2, observe that, by Theorem 1 and Corollary 1, $s-h^* \leq 0$ on Ω_0 and $s-h^* \geq 0$ on $\Omega \setminus \Omega_0$, and hence

$$\|s - h^*\|_1 = \int_{\Omega_0} (h^* - s) + \int_{\Omega \setminus \Omega_0} (s - h^*),$$

so that the result follows by (3.1).

In Corollary 3 we have $h_k^* = s_k$ on $\partial \Omega_0$ and $h_k^* \leq s_k$ on $\overline{\Omega} \setminus \Omega_0$ (k = 1, 2), so $h_1^* + h_2^* = s_1 + s_2$ on $\partial \Omega_0$ and $h_1^* + h_2^* \leq s_1 + s_2$ on $\overline{\Omega} \setminus \Omega_0$ and (i) follows. Further,

$$s_1 + s_2 - (h_1^* + h_2^*) \leq s_1 - h_1^* \leq 0$$
 on Ω_0

by Corollary 1, and

$$s_1 + s_2 - (h_1^* + h_2^*) \ge s_1 - h_1^* \ge 0$$
 on $\overline{\Omega} \setminus \Omega_0$,

so (ii) also holds.

4. PROOF OF THEOREM 2.

4.1. We need the following lemmas.

LEMMA 5. Let $s \in \mathcal{S}$ and $u^* \in \mathcal{U}$. Then u^* is a best superharmonic L^1 -approximant to s on $\overline{\Omega}$ if and only if

$$\int_{E_{-}(s-u^{*})} (u-u^{*}) - \int_{E_{+}(s-u^{*})} (u-u^{*}) + \int_{E_{0}(s-u^{*})} |u-u^{*}| \ge 0 \quad (4.1)$$

for every $u \in \mathcal{U}$.

LEMMA 6. If $u \in \mathcal{U}$, then

$$\int_{\bar{\Omega} \setminus \Omega_0} u \leq \int_{\Omega_0} u \quad and \quad \int_{\bar{\Omega}} u \leq 2\mathcal{M}(u, 0).$$

Further, in each of these inequalities, equality holds if and only if $u \in \mathcal{H}$.

Lemma 5 is a special case of [12, Theorem 4.5.3]; it depends on the fact that \mathcal{U} is a convex set.

The proof of Lemma 6 depends on the fact that if $u \in \mathcal{U}$, then $\mathcal{M}(u, \cdot)$ is concave on (-1, 1), and is affine if and only if $u \in \mathcal{H}$ (see, for example, [1]). This implies that the function

$$\Phi(t) = \mathcal{M}(u, t) + \mathcal{M}(u, -t) \qquad (0 \le t < 1)$$

is decreasing on [0, 1), and is constant if and only if $u \in \mathcal{H}$. Hence

$$\int_{\bar{\Omega} \setminus \Omega_0} u = \int_0^{1/2} \Phi(t + \frac{1}{2}) \, dt \leq \int_0^{1/2} \Phi(t) \, dt = \int_{\Omega_0} u$$

and

$$\int_{\bar{\Omega}} u = \int_0^1 \Phi(t) \, dt \leqslant \Phi(0) = 2\mathcal{M}(u, 0),$$

with equality in each case if and only if $u \in \mathcal{H}$.

4.2. We begin the proof of Theorem 2 by showing that if $s \in \mathcal{S}$ has a best harmonic L^1 -approximant u^* , then u^* is also a best superharmonic L^1 -approximant to s. Without loss of generality we may assume that $u^* \equiv 0$. By Theorem 1 and Lemma 2, $s \ge 0$ on $\overline{\Omega} \setminus \Omega_0$ and either

- (I) s = 0 on Ω_0 , or
- (II) s < 0 on Ω_0 .

It is enough in each case to show that (4.1) holds for every $u \in \mathcal{U}$. In case (I), $E_{-}(s) = \emptyset$ and $\Omega_0 \subseteq E_0(s)$. Hence

$$-\int_{E_+(s)} u + \int_{E_0(s)} |u| \ge -\int_{\bar{\Omega} \setminus \Omega_0} u + \int_{\Omega_0} u \ge 0$$

by Lemma 6. Hence (4.1) holds.

In case (II), $E_{-} = \Omega_0$, so by Lemma 6,

$$\begin{split} \int_{E_{-}(s)} u &= \int_{\Omega_{0}} u \geqslant \int_{\overline{\Omega} \setminus \Omega_{0}} u = \int_{E_{+}(s) \cup E_{0}(s)} u \\ &\geqslant \int_{E_{+}(s)} u - \int_{E_{0}(s)} |u|, \end{split}$$

so that (4.1) again holds.

4.3. Now suppose that $u^* \in \mathcal{U}$ is a best superharmonic L^1 -approximant to s and that $u^* \notin \mathcal{H}$. We will show that this leads to a contradiction. Since $u^* \notin \mathcal{H}$, the Riesz measure μ associated with u^* is not the zero measure. Let K be a compact subset of Ω such that $\mu(K) > 0$, and let u_1^* be the Green potential on Ω with Riesz measure $\mu|_K$. Then $u_1^* \in C(\Omega)$ since $u^* \in C(\Omega)$, and u_1^* has a continuous extension to $\overline{\Omega}$, given by defining $u_1^* = 0$ on $\partial \Omega$. Also, since $G_{\Omega}(x, y)$, the Green function for Ω , decays exponentially as $||y|| \to +\infty$, uniformly for x in K (see [6]), it follows that u_1^* also decays exponentially and therefore $u_1^* \in L^1(\Omega)$. Thus $u_1^* \in \mathcal{U}$. Now define $s_1 = s - (u^* - u_1^*)$. Then $u^* - u_1^* \in \mathcal{U}$ and $s_1 \in \mathcal{S}$, and u_1^* is a best superharmonic L^1 -approximant to s_1 .

It follows that 0 is a best superharmonic L^1 -approximant to $s_1 - u_1^* = s - u^*$, and therefore 0 is a best harmonic L^1 -approximant to $s_1 - u_1^*$. By Theorem 1 and Lemma 2, $s_1 \ge u_1^*$ on $\overline{\Omega} \setminus \Omega_0$ and either

(I)
$$s_1 - u_1^* = 0$$
 on Ω_0 , or

(II) $s_1 - u_1^* < 0$ on Ω_0 .

We write $E_+ = E_+(s_1 - u_1^*)$, etc. In case (I), $E_- = \emptyset$ and $\Omega_0 \subseteq E_0$. Since $u_1^* \notin \mathcal{H}$, it follows from Lemma 6 that

$$2\mathcal{M}(u_1^*,0) \! > \! \int_{\bar{\Omega}} u_1^*$$

Let

$$\varepsilon = \frac{1}{8} \left(2\mathcal{M}(u_1^*, 0) - \int_{\overline{\Omega}} u_1^* \right). \tag{4.2}$$

Since $s_1 = u_1^*$ on E_0 , we have $u_1^* \in \mathcal{H}((E_0)^\circ)$. Let K(r) be the compact cylinder defined in Section 2.6, and choose r so that $K \subset (K(r))^\circ$. Define $F = E_0 \cup \overline{(\Omega \setminus K(r))}$. Then $u_1^* \in L^P(F) \cap \mathcal{H}(F^\circ)$ for each $p \ge 1$. By Lemma 4, there is a function H, harmonic on \mathbb{R}^n except for isolated singularities in $\mathbb{R}^n \setminus F$, such that

$$\int_{F} |H - u_1^*| < \varepsilon. \tag{4.3}$$

Since $\overline{\Omega \setminus K(r)} \subseteq F$, only finitely many singularities of *H* lie in $\overline{\Omega}$, and these singularities also lie in E_+ . Since, by Lemma 2, each component of E_+ meets $\partial \Omega$, it follows from [4, Lemma 4.1] that there exists $h \in \mathcal{H}$ such that

$$\int_{E_0} |h - H| < \varepsilon. \tag{4.4}$$

Since $\Omega_0 \subseteq E_0$, we see from (2.1), (4.3), and (4.4) that

$$|\mathcal{M}(h,0) - \mathcal{M}(u_1^*,0)| = \left| \int_{\Omega_0} (h - u_1^*) \right| < 2\varepsilon.$$

$$(4.5)$$

Now

$$\begin{split} \int_{E_{+}} (h - u_{1}^{*}) &= \int_{\overline{\omega}} (h - u_{1}^{*}) - \int_{E_{0}} (h - u_{1}^{*}) \\ &> \int_{\overline{\omega}} (h - u_{1}^{*}) - 2\varepsilon \qquad (by \ (4.3), \ (4.4)) \\ &= 2\mathcal{M}(h, 0) - \int_{\overline{\omega}} u_{1}^{*} - 2\varepsilon \qquad (by \ (2.1)) \end{split}$$

$$\ge 2\mathcal{M}(u_1^*, 0) - 4\varepsilon - \int_{\overline{\Omega}} u_1^* - 2\varepsilon \qquad (by (4.5))$$

= $2\varepsilon > \int_{E_0} |h - u_1^*|, \qquad (by (4.2) - (4.4))$

contradicting Lemma 5.

In case (II), $E_{-} = \Omega_0$. Taking u = 0 in (4.1) we obtain

$$\int_{E_{-}} u_{1}^{*} \leqslant \int_{E_{+} \cup E_{0}} u_{1}^{*} = \int_{\bar{\Omega} \setminus \Omega_{0}} u_{1}^{*} \leqslant \int_{E_{-}} u_{1}^{*}$$

(the last inequality follows from Lemma 6). Hence

$$\int_{\bar{\Omega}\setminus\Omega_0} u_1^* = \int_{\Omega_0} u_1^*,$$

and so $u_1^* \in \mathscr{H}$ by Lemma 6. This contradicts our construction of u_1^* . We now have a contradiction in each case, so $u^* \in \mathscr{H}$ as required.

REFERENCES

- D. H. Armitage and S. J. Gardiner, The growth of the hyperplane mean of a subharmonic function, J. London Math. Soc. (2) 36 (1987), 501–512.
- D. H. Armitage, S. J. Gardiner, W. Haussmann, and L. Rogge, Characterization of best harmonic and superharmonic L¹-approximants, J. Reine Angew. Math. 478 (1996), 1–15.
- D. H. Armitage and M. Goldstein, Quadrature and harmonic L¹-approximation in annuli, Trans. Amer. Math. Soc. 312 (1989), 141–154.
- D. H. Armitage and M. Goldstein, Better than uniform approximation on closed sets by harmonic functions with singularities, Proc. London Math. Soc. (3) 60 (1990), 319–343.
- 5. D. H. Armitage and M. Goldstein, Quadrature and harmonic approximation of subharmonic functions in strips, J. London Math. Soc. (2) 46 (1992), 171-179.
- 6. F. T. Brawn, The Green and Poisson kernels for the strip $R^n \times]0, 1[, J. London Math. Soc. (2) 2 (1970), 439-454.$
- J. L. Doob, "Classical Potential Theory and Its Probabilistic Counterpart," Springer-Verlag, New York, 1983.
- S. J. Gardiner, "Harmonic Approximation" LMS Lecture Notes 221, Cambridge Univ. Press, Cambridge, 1995.
- M. Goldstein, W. Haussmann, and K. Jetter, Best harmonic L¹-approximation to subharmonic functions, J. London Math. Soc. (2) 30 (1984), 257–264.
- M. Goldstein, W. Haussmann, and L. Rogge, On the mean value property of harmonic functions and best harmonic L¹-approximation, *Trans. Amer. Math. Soc.* 305 (1988), 505–515.

- 11. L. I. Hedberg, Approximation in the mean by solutions of elliptic equations, *Duke Math. J.* **40** (1973), 9–16.
- 12. P. Kosmol, "Optimierung und Approximation," de Gruyter, Berlin, 1991.
- 13. J. C. Polking, Approximation in L^p by solutions of elliptic partial differential equations, *Amer. J. Math.* **94** (1972), 1231–1244.
- I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin, 1970.