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Let 0 denote the open strip (&1, 1)_Rn&1, where n�2. We completely solve
the problem of characterizing a best harmonic L1-approximant to a subharmonic
function s on 0 (all functions are assumed to be continuous and integrable on 0� ).
This characterization was previously known only under highly restrictive hypoth-
eses on s. The approach of this paper is based, in part, on ideas used recently to
solve the corresponding problem for the unit ball. However, the unboundedness of
0 presents difficulties which require the use of new techniques and recent results
from other branches of harmonic approximation theory. Superharmonic L1-approx-
imation of subharmonic functions is also treated. � 1999 Academic Press

1. INTRODUCTION AND RESULTS

For certain special domains | in Rn (n�2) several authors (see [2, 3,
5, 9, 10]) have sought to characterize best harmonic approximants, in the
L1-norm, to subharmonic functions on | (all functions are assumed to be
continuous on |� ). However, it was only very recently [2] that a complete
characterization was found, even in the simplest case where | is the unit
ball. The purpose of this paper is to obtain results analogous to those in
[2] for an n-dimensional strip. It turns out that, because we are now work-
ing with an unbounded domain, implementation of the strategy in [2]
requires much more powerful techniques; in particular, we need to use
recent results from other branches of harmonic approximation theory.

Article ID jath.1999.3331, available online at http:��www.idealibrary.com on

266
0021-9045�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.



To proceed further, we introduce some notation. Let H(|), S(|), and
U(|) denote respectively the collections of harmonic, subharmonic, and
superharmonic functions on |. If f # L1(|), then we define & f &1=�| | f |,
where the integral is with respect to n-dimensional Lebesgue measure *.
A function h* # C(|� ) & H(|) which satisfies

& f&h*&1�& f&h&1 for all h # C(|� ) & H(|)

is called a best harmonic L1-approximant to f on |� . Similarly, a function
u* # C(|� ) & U(|) which satisfies

& f&u*&1�& f&u&1 for all u # C(|� ) & U(|)

is called a best superharmonic L1-approximant to f on |� . Let B denote the
open unit ball in Rn and let B0 be the open ball of centre 0 and radius
2&1�n. Thus *(B0)=*(B)�2. The main result of [2] is as follows.

Theorem A. Let s # C(B� ) & S(B) and h* # C(B� ) & H(B). Then h* is a
best harmonic L1-approximant to s on B� if and only if

(i) h*=s on �B0 , and

(ii) h*�s on B� "B0 .

It was also shown in [2] that a best superharmonic L1-approximant
to a given subharmonic function is necessarily harmonic. Below we will
establish analogues of these results for an n-dimensional strip.

Let 0(k)=(&k, k)_Rn&1 for each positive number k; let 0=0(1) and
00=0(1�2). It will also be convenient to write

H=C(0� ) & L1(0) & H(0), S=C(0� ) & L1(0) & S(0),

U=C(0� ) & L1(0) & U(0).

Theorem 1. Let s # S and h* # H. Then h* is a best harmonic
L1-approximant to s on 0� if and only if

(i) h*=s on �00 , and

(ii) h*�s on 0� "00 .

We note that Theorem 1 was proved in [5] under the additional and
very strong hypotheses that s # C2(0) and that 2s>0 almost everywhere.
The corollaries below follow easily from Theorem 1.

Corollary 1. Let s # S. If s has a best harmonic L1-approximant h* on
0� , then h* is unique, and s�h* on 00 .
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Corollary 2. If s # S and the best harmonic L1-approximant h* to s
on 0� exists, then

&s&h*&1=|
0

s&2 |
00

s.

Corollary 3. Let sj belong to S ( j=1, 2) and let hj* be the best
harmonic L1-approximant to sj on 0� . Then

(i) h1*+h2* is the best harmonic L1-approximant to s1+s2 on 0� , and

(ii) &s1&h1*&1�&s1+s2&(h1*+h2*)&1 .

Theorem 2. Let s # S and u* # U. Then u* is a best superharmonic
L1-approximant to s on 0� if and only if u* is the best harmonic L1-approxi-
mant to s on 0� .

The paper is organized as follows. The central part of the proof of
Theorem 1 is contained in a proposition which we state and prove in
Section 2. Theorem 1 and its corollaries are then deduced in Section 3, and
Theorem 2 is proved in Section 4.

2. A KEY RESULT

2.1. For any function f : 0� � R we define

E+( f )=[x # 0� : f (x)>0],

E&( f )=[x # 0� : f (x)<0],

E0( f )=[x # 0� : f (x)=0].

When there is no risk of ambiguity, we write E+ for E+( f ), etc. The
purpose of Section 2 is to prove the following proposition which forms the
core of the proof of Theorem 1.

Proposition. Let s # S and suppose that 0 is a best harmonic L1-approxi-
mant to s on 0� . The following are equivalent:

(a) s�0 on 0� ,

(b) 0� 0 �E0(s).
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2.2. We begin by assembling some basic material. If f: 0� � R, then
we write f +=max[ f, 0]. If f is integrable with respect to (n&1)-dimen-
sional Lebesgue measure *$ on a hyperplane [t]_Rn&1, then we define

M( f, t)=|
R n&1

f (t, x$) d*$(x$).

It is well known (see, for example, [1]) that if h # H, then h is *$-integrable
on [t]_Rn&1 for each t # (&1, 1) and M(h, } ) is an affine function on
(&1, 1). From this it follows immediately that

|
0(k)

h=2kM(h, 0) (h # H; 0<k�1). (2.1)

This analogue of the standard mean value property of harmonic functions
on a ball will be used repeatedly, as will the following lemma.

Lemma 1. Let s # S and h* # H. The following are equivalent:

(a) h* is a best harmonic L1-approximant to s on 0� ;

(b) for every h # H,

|
E&(s&h*)

h&|
E+(s&h*)

h+|
E0 (s&h*)

|h|�0; (2.2)

(c) for every h # H,

|
E0 (s&h*)

h++|
E&(s&h*)

h�M(h, 0). (2.3)

The equivalence of (a) and (b) is a special case of [12, Theorem 4.5.3]
(or see [14, Theorem 1.7]). The equivalence of (b) and (c) is proved as
follows. Adding 2M(h, 0) to each side of (2.2) and using (2.1) with k=1,
we find that (2.2) is equivalent to

2M(h, 0)�|
E0

|h|+|
E0

h+2 |
E&

h=2 |
E0

h++2 |
E&

h,

which is equivalent to (2.3).

Next we give a simple maximum principle. We claim no originality for
it, but it is easier to give a proof than an exact reference.
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Lemma 2. Let | be an open subset of 0. If s # C(|� ) & L1(|) & S(|)
and s�0 on �|, then s�0 on |. Further, if | is connected, then either s<0
on | or s=0 on |.

To see this, define S to be equal to s+ on | and 0 on Rn"|. Then
S # S(Rn), so

S(x)�
1

*(B(x, r)) |B(x, r)
S�

1
*(B(x, r)) ||

s+ � 0 (r � +�),

where B(x, r) denotes the open ball of centre x and radius r in Rn. The
stronger conclusion when | is connected follows from the classical maxi-
mum principle.

2.3. The lemma below will be used to prove that (a) implies (b) in
the proposition.

Lemma 3. Let F be a proper closed subset of 0� such that each compo-
nent of Rn"F meets Rn"0� . If y0 # 0 & �F, a>1, and h # L1(0(a)) &
H(0(a)"[ y0]), then for every =>0 there exists H # H(Rn) such that

|
F

|h&H|<=. (2.4)

For each y # Rn let hy(x)=h(x+ y). If &y&<a&1, then hy #
H(0"[ y0& y]). We first claim that

|
0�

|h&hy | � 0 ( y � 0). (2.5)

To see this, let '>0. Since h # L1(0(a)), there exist positive numbers r and
R such that B( y0 , r)�0 & B(0, R) and

|
B( y0 , r)

|hy |<'�6, |
0� "B(0, R)

|hy |<'�6 (2.6)

whenever &y& is sufficiently small. On the compact set (0� & B(0, R))"
B( y0 , r)=T, say, the functions hy are uniformly bounded for small values
of &y&, and they converge pointwise to h as &y& � 0. Hence, if &y& is
sufficiently small,

|
T

|h&hy |<'�3. (2.7)
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If both (2.6) and (2.7) hold, then

|
0�

|h&hy |<'.

This establishes (2.5).
Since y0 # 0 & �F, it follows from (2.5) that there exists y1 # 0"F such

that the function H0=hy0& y1
is harmonic on 0(b)"[ y1], where b=

(a+1)�2, and satisfies

|
0�

|h&H0 |<=�2. (2.8)

Let |0 be the component of Rn"F which contains y1 . By hypothesis, |0

meets Rn"0(b). Let |1 be a bounded open connected set such that y1 # |1 ,
|� 1 /|0 , and |1"0(b){<, and define E=0� "|1 . Then E is closed and
H0 is harmonic on a neighbourhood of E. Also, the complement of E in the
one-point compactification of Rn is connected and locally connected. It
now follows from [4, Theorem 1.1] (or see [8, Corollary 5.10]) that if d is
a positive constant, then there exists H # H(Rn) such that

|H(x)&H0(x)|<d(1+&x&)&n&1 (x # E).

Since H0 # L1(0(a)), we have H # L1(0(a)). By choosing d small enough,
we can therefore arrange that

|
E

|H&H0 |<=�2. (2.9)

Since F�E�0� , (2.4) follows from (2.8) and (2.9).

2.4. We can now prove that (a) implies (b) in the proposition.
Suppose that 0 is a best harmonic L1-approximant to s and that s�0 on
0� . We write E0=E0(s) and define a number {1 as follows: if E0 contains
no strip 0(t), then {1=0; otherwise define {1=sup [t: 0(t)�E0]. We have
to show that {1�1�2. Suppose, to the contrary, that {1<1�2, and let {2 be
such that max[{1 , 1�3]<{2<1�2. Define F0 to be the union of the set
E0 _ 0({2) with all the components of Rn"(E0 _ 0({2)) that are contained
in 0. We claim that

�F0 & (�0({2)"E0){<. (2.10)

To verify (2.10), observe first that

�F0 ��(E0 _ 0({2))��E0 _ �0({2).
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Hence, if (2.10) is false, �F0 ��E0 and therefore s=0 on �F0 , so that by
Lemma 2, s=0 on (F0)%. We now have s=0 on F0 , so that 0({2)�F0 �
E0 and {2�{1 , contrary to our choice of {2 . This establishes (2.10).

Now choose a point y0 # �F0 & (�0({2)"E0). Define P to be the Poisson
kernel of 0({2), with pole at y0 , normalized so that M(P, 0)=1, and
extended by repeated reflection to be harmonic on Rn, except for a
sequence of singularities. (For properties of P we refer to [6]. The exten-
sion is possible since P(x) � 0 as x � y for each y # �0({2)"[ y0].) Also,
since {2>1�3, none of the singularities of P, except y0 , lies in 0� . We note
that

P # L1(0(a)) & H(0(a)"[ y0]) for some a>1,

P>0 on 0({2),

P<0 on 0� "0({2).

Let 0<=<(1&2{2)�4. Then =<1�12<{2 . Since F0 is a closed subset of
0� 0 , and since Rn"F0 consists of those components of Rn"(E0 _ 0({2)) that
meet Rn"0� , we can apply Lemma 3 to obtain H # H such that

|
F0

|P&H|<=. (2.11)

Since 0({2)�F0 , we have (see (2.1))

|M(P, 0)&M(H, 0)|�
1

2{2
|

0({2)
|P&H|<

=
2{2

<
1
2

. (2.12)

Since M(P, 0)=1, it follows that

M(H, 0)> 1
2 . (2.13)

On F0"0({2) we have H<H&P and hence H +�(H&P)+�|H&P|.
Also, H+�|H|�|H&P|+P on 0({2). Since E0 _ 0({2)�F0 , we obtain

|
E0

H+�|
F0"0({2)

|H&P|+|
0({2)

|H&P|+|
0({2)

P

=|
F0

|H&P|+|
0({2)

P

<=+2{2M(P, 0),
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by (2.11) and (2.1). Using (2.12), our choice of =, and (2.13), we obtain

|
E0

H+<=+2{2( |M(P, 0)&M(H, 0)|+M(H, 0))

<2=+2{2M(H, 0)

<(1&2{2)( 1
2&M(H, 0))+M(H, 0)

<M(H, 0).

This contradicts (2.3). Hence {1�1�2, as required.

2.5. In order to prove the converse implication in the proposition we
need the following lemma.

Lemma 4. Let F be a proper closed subset of Rn, let 1<p�+�, and
suppose that h # L p(F ) & H(F o). Then, for each =>0, there exists a function
H, harmonic on Rn except for isolated singularities in Rn"F, such that

|
F

|h&H|<=.

To prove this, let 1<q<min[ p, n�(n&1)] and define Fk=F & B(0, k)
for k=1, 2, ... By a theorem of Hedberg [11] (see also [13]), for each k
there is a harmonic function hk on a neighbourhood of Fk such that

|
Fk

|hk&h|�\|Fk

|hk&h| q+
1�q

(*(Fk)) (q&1)�q<=.

It now follows from [4, Theorem 1.4] (or rather, from its proof) that there
is a function H with the stated properties.

2.6. We now prove that (b) implies (a) in the proposition. Suppose
that 0 is a best harmonic L1-approximant to s and that 0� 0 �E0(s). We
write E+=E+(s), etc. Observe first that

(E0 _ E&)%=E%0 _ E& , (2.14)

for if there were a point y0 of �E0 in (E0 _ E&)%, then the mean value
inequality for the subharmonic function s would fail for small balls centred
at y0 .

We now suppose that E{< and show that this leads to a contradiction.
Let ��E& denote the boundary of E& in the one-point compactification
Rn _ [�] of Rn and let +x be harmonic measure on ��E& relative to a
point x of E& . Note that, if � # ��E& , then +x([�])=0 for each x # E& .
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To see this, take a positive harmonic function g on 0 such that
g( y) � +� as y � �, and observe that +x([�])<=g(x) for all =>0. (An
example of such a function g is given by

g(x1 , ..., xn)=cos x1 cosh
x2

- (n&1)
} } } cosh

xn

- (n&1)
.)

It follows that +x(�E&)=1 for each x # E& .
Let K(r) be the compact cylinder given by

K(r)=[(t, x$) # [&1, 1]_Rn&1 : &x$&�r] (r>0).

Since +x(�E&)>0 for each x # E& , there is a number r0 such that
+x(K(r0) & �E&)>0 for some x # E& . Define w(x)=+x(K(r0) & �E&) for
each x # E& and define w=0 on 0"E& . Then w is harmonic on E& and
w(x) � 0 as x � y for every y # �E&"K(r0) that is regular for the Dirichlet
problem on E& . Since the set of all irregular boundary points is polar, it
follows that the function w*, defined by

w*( y)=lim sup
x � y

w(x) ( y # 0),

is subharmonic on 0"(�E& & K(r0)) (see, for example, [7, p. 60]). Clearly

0�w*�1 on 0 (2.15)

and

lim
x � y

w*(x)=0 ( y # ��0"K(r0)). (2.16)

We define

Fr=E0 _ E& _ (0� "(K(r))%) (r>r0),

and note from (2.14) that w* # S((Fr)%). Let hr denote the least harmonic
majorant of w* on (Fr)%, and let hr=0 on 0� "(Fr)%. We need to establish
the following:

(:) hr # L p(0� ) for each p�1;

(;) hr(x) is a decreasing function of r for each x # (E0 _ E&)%;

(#) hr(x) � 0 as r � +� for each x # (E0)%.

To prove (:), let G denote the Green function for 0(2) with pole 0,
choose a constant c such that cG�1 on K(r0), and define U=min[1, cG]
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on 0� . Then U # C(0� ) & U(0) and U>0 on 0. On K(r0) we have
0�w*�1=U. From (2.15), (2.16), and the maximum principle, it follows
that w*�U on 0"K(r0). Hence U is a superharmonic majorant of w* on
0, which contains (Fr)%, and so 0�w*�hr�U on (Fr)%. Since G(x)
decays exponentially as x � � (see [6]), (:) now follows.

To prove (;) we simply note that Fr decreases as r increases.
To prove (#), we define ur on (Fr)% by

ur=inf[u # U((Fr)%) : u>0 on (Fr)% and u�1 on E& _ (0"K(r))]

and let ûr be the balayage given by

ûr( y)=min[ur( y), lim inf
x � y

ur(x)] ( y # (Fr)%).

Then ûr is a superharmonic majorant of w* on (Fr)%, and so hr�ur on
(E0 & K(r))%. Hence, in view of (2.14), if x # (E0)% and &x&<r, we have
hr(x)�&r(x), where &r( y) is the harmonic measure of the set E0 &
�K(r) & 0 at a point y # (E0 & K(r))%. Since &r(x) � 0 as r � +� for each
x # (E0)%, the claim (#) is proved.

From (:), (;), (#), and dominated convergence, it now follows that

|
E0

hr � 0 (r � +�). (2.17)

Let

== 1
8 |

E&

w. (2.18)

Since w is non-negative, harmonic, and not identically 0 on E& , we see
that =>0. By (2.17) we can choose r1>r0 such that

|
E0

hr1
<=. (2.19)

Define h0=&hr1
and F=Fr1

. By (:), h0 # L p(F ) for each p�1, and
h0 # H(F%) by definition. Hence, by Lemma 4, there exists a function H,
harmonic on Rn apart from isolated singularities in Rn"F, such that

|
F

|h0&H|<=. (2.20)

Since 0� "(K(r1))%�F, only finitely many singularities of H lie in 0� . Each
singularity in 0� "F lies in E+ . By Lemma 2 and the continuity of s, every
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component of E+ meets �0. It now follows from [4, Lemma 4.1] that
there exists a harmonic function h on a neighbourhood of 0� such that

|
E0 _ E&

|H&h|<=. (2.21)

In fact, the range of integration E0 _ E& in (2.21) can be replaced by 0� "L,
where L is some bounded subset of E+ . With this modification, it follows
from (2.20), (2.21), and property (:) that h # L1(0� ), and so h # H.

Since 00 �E0 , we see from (2.1) and (2.19) that

|M(h0 , 0)|= } |00

h0 }=|
00

hr1
<=. (2.22)

Since h&h0 # H(00), it follows from (2.1), (2.20), and (2.21) that

|M(h, 0)&M(h0 , 0)|= } |00

h&h0 }<2=. (2.23)

From (2.19)�(2.21),

|
E0

h+�|
E0

|h|�|
E0

|h&h0 |+|
E0

|h0 |<3=. (2.24)

Finally, since hr1
�w*=w on E& , we have h0� &w on E& and so

|
E0

h++|
E&

h<3=+|
E&

(h&h0&w) (by (2.24))

�3=+|
E&

|h&h0 |&|
E&

w

<3=+2=&8= (by (2.20), (2.21), (2.18))

<M(h, 0) (by (2.22), (2.23)).

This contradicts (2.3). Hence E&=<.

3. PROOF OF THEOREM 1 AND COROLLARIES

3.1. We begin with the sufficiency of conditions (i) and (ii) in
Theorem 1. Note first that, if h # H, then

|
0

h=2M(h, 0)=2 |
00

h
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by (2.1), and so

|
0"00

h=|
00

h. (3.1)

Now suppose that (i) and (ii) hold. By Lemma 2, applied to s&h*, either

(I) s&h*=0 on 00 , or

(II) s&h*<0 on 00 .

Let E+=E+(s&h*), etc. If (I) holds, then E+ �0� "00 and E&=< by
(ii), so that for every h # H,

|
E&

h&|
E+

h+|
E0

|h|=&|
E+

h+|
E0"00

|h|+|
00

|h|

�&|
E+

h&|
E0"00

h+|
00

|h|

=&|
0� "00

h+|
00

|h|�0,

by (3.1). Hence (2.2) holds.
If (II) holds, then E&=00 by (ii). Hence, for every h # H,

&|
E&

h=&|
E+ _ E0

h�&|
E+

h+|
E0

|h|,

by (3.1), and again (2.2) holds.
It now follows from Lemma 1 that h* is a best harmonic L1-approxi-

mant to s.

3.2. It remains to demonstrate the necessity of (i) and (ii). Let h* be
a best harmonic L1-approximant to s. By considering s&h* instead of s,
we may suppose that 0 is a best harmonic L1-approximant to s. Clearly
E0(s+)=E0(s) _ E&(s), E+(s+)=E+(s) and E&(s+)=<. Thus, for each
h # H,

|
E&(s+)

h&|
E+(s+)

h+|
E0(s+)

|h|= &|
E+(s)

h+|
E&(s)

|h|+|
E0(s)

|h|

� &|
E+(s)

h+|
E&(s)

h+|
E0(s)

|h|

�0,
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by Lemma 1. Hence, again by Lemma 1, the function 0 is a best harmonic
L1-approximant to s+ # S. By the implication ``(a) O (b)'' in the proposi-
tion, applied to s+,

0� 0 �E0(s+)=E0(s) _ E&(s).

In particular, s�0 on �00 . Hence, by Lemma 2, either

(I) s=0 on 00 , or

(II) s<0 on 00 .

In case (I) we apply the implication ``(b) O (a)'' in the proposition to see
that s�0 on 0� , so conditions (i) and (ii) hold.

To deal with case (II), choose h # H so that M(h, t)=&1 for each
t # (&1, 1); for example, we can take h to be a suitable multiple of the
Poisson kernel for (&2, +�)_Rn&1 with pole (&2, 0, ..., 0):

h(t, x$)=&ct[&x$&2+(t+2)2]&n�2 (t> &2; x$ # Rn&1).

Applying (2.2) with h*=0 we obtain

&1=|
00

h�|
E&(s)

h�|
E+(s) _ E0(s)

h�|
0"00

h=&1,

so that equality holds throughout. Hence s�0 almost everywhere on
0� "00 , and therefore, by continuity, s�0 on 0� "00 . Since s<0 on 00 , we
have s=0 on �00 by continuity. Thus (i) and (ii) again hold.

3.3. Corollary 1 follows easily, since by Theorem 1 any two best
harmonic L1-approximants to s # S must agree on �00 , and hence on 00

by Lemma 2, and thus on all of 0� . Also, if h* is the best harmonic
L1-approximant to s, then s&h*=0 on �00 , and hence s&h*�0 on 00

by Lemma 2 again.
To prove Corollary 2, observe that, by Theorem 1 and Corollary 1,

s&h*�0 on 00 and s&h*�0 on 0"00 , and hence

&s&h*&1=|
00

(h*&s)+|
0"00

(s&h*),

so that the result follows by (3.1).
In Corollary 3 we have hk*=sk on �00 and hk*�sk on 0� "00 (k=1, 2),

so h1*+h2*=s1+s2 on �00 and h1*+h2*�s1+s2 on 0� "00 and (i) follows.
Further,

s1+s2&(h1*+h2*)�s1&h1*�0 on 00
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by Corollary 1, and

s1+s2&(h1*+h2*)�s1&h1*�0 on 0� "00 ,

so (ii) also holds.

4. PROOF OF THEOREM 2.

4.1. We need the following lemmas.

Lemma 5. Let s # S and u* # U. Then u* is a best superharmonic
L1-approximant to s on 0� if and only if

|
E&(s&u*)

(u&u*)&|
E+(s&u*)

(u&u*)+|
E0(s&u*)

|u&u*|�0 (4.1)

for every u # U.

Lemma 6. If u # U, then

|
0� "00

u�|
00

u and |
0�

u�2M(u, 0).

Further, in each of these inequalities, equality holds if and only if u # H.

Lemma 5 is a special case of [12, Theorem 4.5.3]; it depends on the fact
that U is a convex set.

The proof of Lemma 6 depends on the fact that if u # U, then M(u, } ) is
concave on (&1, 1), and is affine if and only if u # H (see, for example,
[1]). This implies that the function

8(t)=M(u, t)+M(u, &t) (0�t<1)

is decreasing on [0, 1), and is constant if and only if u # H. Hence

|
0� "00

u=|
1�2

0
8(t+ 1

2) dt�|
1�2

0
8(t) dt=|

00

u

and

|
0�

u=|
1

0
8(t) dt�8(0)=2M(u, 0),

with equality in each case if and only if u # H.
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4.2. We begin the proof of Theorem 2 by showing that if s # S has a
best harmonic L1-approximant u*, then u* is also a best superharmonic
L1-approximant to s. Without loss of generality we may assume that
u*#0. By Theorem 1 and Lemma 2, s�0 on 0� "00 and either

(I) s=0 on 00 , or

(II) s<0 on 00 .

It is enough in each case to show that (4.1) holds for every u # U.
In case (I), E&(s)=< and 00 �E0(s). Hence

&|
E+(s)

u+|
E0(s)

|u|�&|
0� "00

u+|
00

u�0

by Lemma 6. Hence (4.1) holds.
In case (II), E&=00 , so by Lemma 6,

|
E&(s)

u=|
00

u�|
0� "00

u=|
E+(s) _ E0(s)

u

�|
E+(s)

u&|
E0(s)

|u|,

so that (4.1) again holds.

4.3. Now suppose that u* # U is a best superharmonic L1-approxi-
mant to s and that u* � H. We will show that this leads to a contradiction.
Since u* � H, the Riesz measure + associated with u* is not the zero
measure. Let K be a compact subset of 0 such that +(K)>0, and let u1*
be the Green potential on 0 with Riesz measure +|K . Then u1* # C(0)
since u* # C(0), and u1* has a continuous extension to 0� , given by defining
u1*=0 on �0. Also, since G0(x, y), the Green function for 0, decays
exponentially as &y& � +�, uniformly for x in K (see [6]), it follows that
u1* also decays exponentially and therefore u1* # L1(0). Thus u1* # U. Now
define s1=s&(u*&u1*). Then u*&u1* # U and s1 # S, and u1* is a best
superharmonic L1-approximant to s1 .

It follows that 0 is a best superharmonic L1-approximant to s1&u1*=
s&u*, and therefore 0 is a best harmonic L1-approximant to s1&u1*. By
Theorem 1 and Lemma 2, s1�u1* on 0� "00 and either

(I) s1&u1*=0 on 00 , or

(II) s1&u1*<0 on 00 .
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We write E+=E+(s1&u1*), etc. In case (I), E&=< and 00 �E0 . Since
u1* � H, it follows from Lemma 6 that

2M(u1*, 0)>|
0�

u1*.

Let

== 1
8 \2M(u1*, 0)&|

0�
u1*+ . (4.2)

Since s1=u1* on E0 , we have u1* # H((E0)%). Let K(r) be the compact
cylinder defined in Section 2.6, and choose r so that K/(K(r))%. Define
F=E0 _ (0"K(r)). Then u1* # LP(F) & H(F%) for each p�1. By Lemma 4,
there is a function H, harmonic on Rn except for isolated singularities in
Rn"F, such that

|
F

|H&u1* |<=. (4.3)

Since 0"K(r)�F, only finitely many singularities of H lie in 0� , and these
singularities also lie in E+ . Since, by Lemma 2, each component of E+

meets �0, it follows from [4, Lemma 4.1] that there exists h # H such that

|
E0

|h&H|<=. (4.4)

Since 00 �E0 , we see from (2.1), (4.3), and (4.4) that

|M(h, 0)&M(u1* , 0)|= } |00

(h&u1*)}<2=. (4.5)

Now

|
E+

(h&u1*)=|
0�

(h&u1*)&|
E0

(h&u1*)

>|
0�

(h&u1*)&2= (by (4.3), (4.4))

=2M(h, 0)&|
0�

u1*&2= (by (2.1))

281BEST HARMONIC L1-APPROXIMANTS



�2M(u1*, 0)&4=&|
0�

u1*&2= (by (4.5))

=2=>|
E0

|h&u1* |, (by (4.2)�(4.4)),

contradicting Lemma 5.
In case (II), E&=00 . Taking u=0 in (4.1) we obtain

|
E&

u1*�|
E+ _ E0

u1*=|
0� "00

u1*�|
E&

u1*

(the last inequality follows from Lemma 6). Hence

|
0� "00

u1*=|
00

u1* ,

and so u1* # H by Lemma 6. This contradicts our construction of u1*.
We now have a contradiction in each case, so u* # H as required.
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