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Let Q denote the open strip (—1, 1) x R*~!, where n>2. We completely solve
the problem of characterizing a best harmonic L'-approximant to a subharmonic
function s on Q (all functions are assumed to be continuous and integrable on Q).
This characterization was previously known only under highly restrictive hypoth-
eses on s. The approach of this paper is based, in part, on ideas used recently to
solve the corresponding problem for the unit ball. However, the unboundedness of
Q presents difficulties which require the use of new techniques and recent results
from other branches of harmonic approximation theory. Superharmonic L'-approx-
imation of subharmonic functions is also treated. ~© 1999 Academic Press

1. INTRODUCTION AND RESULTS

For certain special domains w in R” (n > 2) several authors (see [2, 3,
5,9, 10]) have sought to characterize best harmonic approximants, in the
L'-norm, to subharmonic functions on  (all functions are assumed to be
continuous on @). However, it was only very recently [2] that a complete
characterization was found, even in the simplest case where w is the unit
ball. The purpose of this paper is to obtain results analogous to those in
[2] for an n-dimensional strip. It turns out that, because we are now work-
ing with an unbounded domain, implementation of the strategy in [2]
requires much more powerful techniques; in particular, we need to use
recent results from other branches of harmonic approximation theory.
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To proceed further, we introduce some notation. Let #(w), ¥(w), and
A (w) denote respectively the collections of harmonic, subharmonic, and
superharmonic functions on w. If f e L'(w), then we define || f|, = Sw Lf1,
where the integral is with respect to n-dimensional Lebesgue measure /.
A function h* € C(@) N # (w) which satisfies

If=h*h<|f=hly  forall hel(d)n H#(w)

is called a best harmonic L'-approximant to f on . Similarly, a function
u* e C(@) N %(w) which satisfies

If=u*ly <[l f—ull,  forall weC(w)nuU(w)

is called a best superharmonic L'-approximant to f on @. Let B denote the
open unit ball in R” and let B, be the open ball of centre 0 and radius
2~V Thus A(B,) = A(B)/2. The main result of [2] is as follows.

THEOREM A. Let se C(B)n ¥ (B) and h* € C(B) n #(B). Then h* is a

best harmonic L'-approximant to s on B if and only if
(i) h*=s on 0B, and
(ii) h*<s on B\B,.

It was also shown in [2] that a best superharmonic L'-approximant
to a given subharmonic function is necessarily harmonic. Below we will
establish analogues of these results for an n-dimensional strip.

Let Q(k)=(—k, k) x R"~! for each positive number k; let 2 =Q(1) and
Q,=0Q(1/2). It will also be convenient to write

H=CQ)NLNQ) A H(Q), F=CQ)NLY(Q)nF (),
U =C(Q)nLNQ) N UQ).
THEOREM 1. Let s€% and h*e A. Then h* is a best harmonic
L'-approximant to s on Q if and only if
(1) h*=s on 0Q,, and
(il) h*<s on Q\Q,.

We note that Theorem 1 was proved in [5] under the additional and
very strong hypotheses that se C*(2) and that As>0 almost everywhere.
The corollaries below follow easily from Theorem 1.

COROLLARY 1. Let se . If s has a best harmonic L*-approximant h* on
Q, then h* is unique, and s <h* on Q,.
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COROLLARY 2. If s€ % and the best harmonic L'-approximant h* to s
on 2 exists, then

s—h*|,=| s=2| s
ls=h*l=[ s=2]
COROLLARY 3. Let s; belong to & (j=1,2) and let hj* be the best

harmonic L'-approximant to s; on Q. Then

(1) A+ hF is the best harmonic L'-approximant to s, + s, on Q, and
(i) sy =A< sy +sy— (A + A3,

THEOREM 2. Let s€& and u*e€. Then u* is a best superharmonic
L'-approximant to s on Q if and only if u* is the best harmonic L'-approxi-
mant to s on £2.

The paper is organized as follows. The central part of the proof of
Theorem 1 is contained in a proposition which we state and prove in
Section 2. Theorem 1 and its corollaries are then deduced in Section 3, and
Theorem 2 is proved in Section 4.

2. A KEY RESULT

2.1. For any function f: Q —» R we define

E.(f)={xeQ: [(x)>0},
E_(f)={xe@: f(x)<0},
Eo(f)={xeQ: f(x)=0}.
When there is no risk of ambiguity, we write E, for E_(f), etc. The

purpose of Section 2 is to prove the following proposition which forms the
core of the proof of Theorem 1.

PROPOSITION.  Let s € & and suppose that 0 is a best harmonic L'-approxi-
mant to s on Q. The following are equivalent:
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2.2. We begin by assembling some basic material. If £ Q — R, then
we write f* =max{f, 0}. If / is integrable with respect to (n— 1)-dimen-
sional Lebesgue measure A’ on a hyperplane {7} x R"~', then we define

M(fit)= S, x") dA'(x").

RrRn—1

It is well known (see, for example, [ 1]) that if 2 € #, then /i is A'-integrable
on {7} xR"~! for each re(—1,1) and .#(h,-) is an affine function on
(—1,1). From this it follows immediately that

j h=2ktl(h,0) (he#;0<k<1). (2.1)
Q(k)

This analogue of the standard mean value property of harmonic functions
on a ball will be used repeatedly, as will the following lemma.
Lemma 1. Let s€ & and h* € #. The following are equivalent:

(a) h* is a best harmonic L*-approximant to s on Q;
(b) for every he i,

L_@,m ”‘Lm,,ﬂ) ht LO(S,M) | > 0; (22)

(c) for every he H#,

h* +j h>(h,0). (2.3)

jEO(s—h*) E_(s—h*)

The equivalence of (a) and (b) is a special case of [ 12, Theorem 4.5.3]
(or see [14, Theorem 1.7]). The equivalence of (b) and (c) is proved as
follows. Adding 2.#(h, 0) to each side of (2.2) and using (2.1) with k=1,
we find that (2.2) is equivalent to

2/%(/1,0)4% Ih| +L0h+2fa h=2L0h+ +2L~, h,

which is equivalent to (2.3).

Next we give a simple maximum principle. We claim no originality for
it, but it is easier to give a proof than an exact reference.
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LeMMA 2. Let w be an open subset of Q. If se C(®)n LY w)n F(w)
and s <0 on 0w, then s <0 on w. Further, if @ is connected, then either s <0
onwor s=0 on m.

To see this, define S to be equal to s* on w and 0 on R"™\w. Then
Se Z(R"), so

1 1 N
SOV <0 e S SHBG T LT 0 o)

where B(x,r) denotes the open ball of centre x and radius r in R". The
stronger conclusion when w is connected follows from the classical maxi-
mum principle.

2.3. The lemma below will be used to prove that (a) implies (b) in

the proposition.

LemMma 3. Let F be a proper closed subset of Q such that each compo-
nent of R™\F meets R'\Q. If y,€Qn0dF, a>1, and he L'(Q(a))n
H(L2(a)\{yo}), then for every ¢>0 there exists He #(R") such that

[ 1n—Hi<e (24)

For each yeR" let hy(x)=h(x+y). If |yll<a—1, then h, e
H(R\{yo— y}). We first claim that

f, |h=h,|>0  (y—0) (2.5)
Q

To see this, let # > 0. Since 4 e L'(2(a)), there exist positive numbers r and
R such that B(y,, r)= Q2 n B(0, R) and

[ ml<me, [ inl<us6 (26)
B 2\B(0, R)

(J’()s r)

whenever ||y| is sufficiently small. On the compact set (2 n B(0, R))\
B(yo,r)=T, say, the functions %, are uniformly bounded for small values
of |y|l, and they converge pointwise to & as [|y| — 0. Hence, if |y| is
sufficiently small,

j h—h,| <n/3. (2.7
T
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If both (2.6) and (2.7) hold, then

J, 1h=hi<n

This establishes (2.5).

Since y, € Q2 N JF, it follows from (2.5) that there exists y; € Q\F such
that the function Hy=h is harmonic on Q(b)\{y,}, where b=
(a+1)/2, and satisfies

Yo— N1

| 1= Ho| <22, (2.8)

Let w, be the component of R"\F which contains y,. By hypothesis, w,
meets R™\Q(b). Let w, be a bounded open connected set such that y, e w,,
@, Cwy, and w;\Q(b) # &, and define E=Q\w,. Then E is closed and
H, is harmonic on a neighbourhood of E. Also, the complement of E in the
one-point compactification of R” is connected and locally connected. It
now follows from [4, Theorem 1.1] (or see [ 8, Corollary 5.10]) that if d is
a positive constant, then there exists H e #(R") such that

|H(x) — Ho(x)| <d(1+[x])~"""  (x€E).

Since H, € L(Q(a)), we have He L(Q(a)). By choosing d small enough,
we can therefore arrange that

j |H— H,| <¢/2. (2.9)

Since FS E< Q, (2.4) follows from (2.8) and (2.9).

24. We can now prove that (a) implies (b) in the proposition.
Suppose that 0 is a best harmonic L'-approximant to s and that s >0 on
Q. We write E,= E,(s) and define a number 1, as follows: if E, contains
no strip €(¢), then 7, = 0; otherwise define 7, =sup {#: Q(¢) = E,}. We have
to show that 7, > 1/2. Suppose, to the contrary, that 7, <1/2, and let 7, be
such that max{t,, 1/3} <7,<1/2. Define F, to be the union of the set

E, U Q(z,) with all the components of R"\(E, U Q(7,)) that are contained
in Q. We claim that

OFy 0 (0Q(7,)\Eo) # . (2.10)

To verify (2.10), observe first that

0Fy CO(Ey U Q(1y)) SOE, U 0Q(1,).
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Hence, if (2.10) is false, 0F, < 0E, and therefore s =0 on 0F,, so that by
Lemma 2, s=0 on (F,)°. We now have s=0 on F|,, so that Q(7,) = F, =
E, and 7, <71, contrary to our choice of 7,. This establishes (2.10).

Now choose a point y, € 0F, N (02(7,)\E,). Define P to be the Poisson
kernel of Q(7,), with pole at y,, normalized so that .#(P,0)=1, and
extended by repeated reflection to be harmonic on R”, except for a
sequence of singularities. (For properties of P we refer to [6]. The exten-
sion is possible since P(x)— 0 as x —y for each y€dQ(t,)\{yo}.) Also,
since 7, > 1/3, none of the singularities of P, except y,, lies in Q. We note
that

PeL'(Q(a))n#(Qa)\{yo})  for some a>1,
P>0 on (z,),

P<0 on Q\Q(t,).

Let 0 <e<(1—21,)/4. Then ¢ <1/12 <1,. Since F, is a closed subset of
Q,, and since R™\F, consists of those components of R"\(E, U Q(z,)) that
meet R"\Q, we can apply Lemma 3 to obtain H e # such that

j |P—H| <. (2.11)
Fo
Since Q(t,) S F,, we have (see (2.1))

1 1
| (P, 0)—M(H,0)| <5— [ |P—H| <5<, (2.12)
275 Yoy 2t, 2

Since .4 (P, 0) =1, it follows that
M(H,0)> 3. (2.13)

On F,\Q(r,) we have H<H —P and hence H* <(H—P)" <|H—P|.
Also, H* < |H|<|H—P| + P on Q(z,). Since E, U Q(1,) = F,, we obtain

fH+<j |H—P|+f |H—P|+J P
E, F\Q(t,) Q(ty) Q(zy)

=[ iH-Pl+[ P
F, Q(7y)

<e+20,.0(P,0),
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by (2.11) and (2.1). Using (2.12), our choice of ¢, and (2.13), we obtain

j H* <&+ 20,(|4(P,0)— J(H,0)| +.4(H,0))

<2¢+2t,4(H,0)
<(1—=2,)(A— . #(H,0))+.4(H,0)
<. (H,0).

This contradicts (2.3). Hence 7; > 1/2, as required.

2.5. In order to prove the converse implication in the proposition we
need the following lemma.

LeEMMA 4. Let F be a proper closed subset of R”, let 1 <p < + o0, and
suppose that he LP(F) n A (F°). Then, for each ¢ >0, there exists a function
H, harmonic on R" except for isolated singularities in R"\F, such that

j \h—H| <e.
F

To prove this, let 1 <g<min{p, n/(n—1)} and define F, =Fn B(0, k)
for k=1,2,.. By a theorem of Hedberg [11] (see also [13]), for each k
there is a harmonic function /4, on a neighbourhood of F} such that

l/q
[ttt (] i) G <e
Fy F

It now follows from [4, Theorem 1.4] (or rather, from its proof) that there
is a function H with the stated properties.

2.6. We now prove that (b) implies (a) in the proposition. Suppose
that 0 is a best harmonic L'-approximant to s and that Q, = Ey(s). We
write £, = E (s), etc. Observe first that

(EqUE_Y°=ESUE_, (2.14)

for if there were a point y, of JE, in (E, U E_)° then the mean value
inequality for the subharmonic function s would fail for small balls centred
at yg.

We now suppose that E # f and show that this leads to a contradiction.
Let 0°E_ denote the boundary of E_ in the one-point compactification
R"U {0} of R” and let u, be harmonic measure on 0“E _ relative to a
point x of E_. Note that, if co e 0°E_, then u, ({0} )=0 for each xe E_.
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To see this, take a positive harmonic function g on £ such that
g(y)— + o0 as y > oo, and observe that u,({o0})<eg(x) for all ¢>0. (An
example of such a function g is given by

X X
g(xy, ., X,,) =08 x; cosh ———— .. cosh ——2—.)

(n—1) V(n=1)
It follows that u, (0E_)=1 for each xe E_.
Let K(r) be the compact cylinder given by
Kr)y={(tx)e[ L 1]1xR* "' |x'|<r} (r>0).

Since u,(0E_)>0 for each xe E_, there is a number r, such that
U (K(rg) mOE_)>0 for some xe E_. Define w(x)=u, (K(rq) n0E_) for
each xe E_ and define w=0 on Q\E_. Then w is harmonic on E_ and
w(x) — 0 as x —» y for every ye dE_\K(r,) that is regular for the Dirichlet
problem on E_. Since the set of all irregular boundary points is polar, it
follows that the function w*, defined by

w*(y)=lim sup w(x) (yeQ),

x>y
is subharmonic on Q\(0E_ n K(r,)) (see, for example, [7, p. 60]). Clearly
(IEQTE| on Q (2.15)

and

lim w*(x)=0  (yed@Q\K(r,)). (2.16)

xX—=>y

We define
F,=E, UE_ U(Q\(K(r))°) (r>ro),

and note from (2.14) that w* e ((F,)°). Let h, denote the least harmonic
majorant of w* on (F,)°, and let #,=0 on Q\(F,)°. We need to establish
the following:

() h,eL?(Q) for each p>1;

(B) h,(x) is a decreasing function of r for each xe (E, U E_)°;

(y) h{x)—0asr— + oo for each x e (E,)°.

To prove (a), let G denote the Green function for £(2) with pole 0,
choose a constant ¢ such that ¢cG>1 on K(r,), and define U=min{1, ¢G}
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on Q. Then UeC(Q)n#%(Q) and U>0 on Q. On K(r,) we have
0<w*<1=U. From (2.15), (2.16), and the maximum principle, it follows
that w* < U on Q\K(r,). Hence U is a superharmonic majorant of w* on
Q, which contains (F,)°, and so 0<w*<h,<U on (F,)°. Since G(x)
decays exponentially as x — oo (see [6]), (a) now follows.

To prove (f) we simply note that F, decreases as r increases.

To prove (y), we define u, on (F,)° by
u,=influeU((F,)°):u>00n (F,)°andu>1on E_ U (Q\K(r))}
and let 7, be the balayage given by

i,(y) =min{u,(y), iminfu,(x)}  (re(F,)°).

xX—=>y

0,1 u i j w s <u
Then 4, is a superharmonic majorant of w* on (F,)°, and so h,<u, on

(Ey nK(r))°. Hence, in view of (2.14), if xe(E,)° and |x| <r, we have
h(x)<v,(x), where v,(y) is the harmonic measure of the set E,n
0K(r)n Q at a point ye (E, n K(r))°. Since v,(x) = 0 as r > + oo for each
xe(Ey)°, the claim (y) is proved.

From (a), (f), (y), and dominated convergence, it now follows that
j h =0  (r— +om). (2.17)
Ey
Let

6=%L w. (2.18)

Since w is non-negative, harmonic, and not identically 0 on E_, we see
that ¢ > 0. By (2.17) we can choose r, >r, such that

j h, <é. (2.19)
E,

Define ho= —h, and F=F,. By («), hoeL”(F) for each p>1, and
ho € #(F°) by definition. Hence, by Lemma 4, there exists a function H,
harmonic on R” apart from isolated singularities in R”\F, such that

j lhe— H| <e. (2.20)
F

Since Q\(K(r,))° S F, only finitely many singularities of H lie in Q. Each
singularity in Q\F lies in E,. By Lemma 2 and the continuity of s, every
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component of £, meets 0Q. It now follows from [4, Lemma4.1] that
there exists a harmonic function / on a neighbourhood of @ such that

j \H—h| <e. (2.21)
EyVE_

In fact, the range of integration E, U E_ in (2.21) can be replaced by Q\L,
where L is some bounded subset of E, . With this modification, it follows
from (2.20), (2.21), and property («) that he L(Q), and so he #.

Since Q, < E,, we see from (2.1) and (2.19) that

ko, 1= [ 1o
0

- L}O h, <e. (2.22)

Since h— hy € H(L2,), it follows from (2.1), (2.20), and (2.21) that

| (h, 0) — .t (hy, 0)] = f h—hy| < 2e. (2.23)
2
From (2.19)~(2.21),
[ne<[ <] th—nol+[ lhol <3 (2.24)
E, Ey Ey E,

Finally, since 4, >w*=w on E_, we have o< —w on E_ and so

jh++j h<3g+j (h—ho—w)  (by (2.24))

<38+JE, |h—h0|—jE7 w

<3e+2:—8¢ (by (2.20), (2.21), (2.18))
<. (h,0) (by (2.22), (2.23)).

This contradicts (2.3). Hence E_ = (.

3. PROOF OF THEOREM | AND COROLLARIES

3.1. We begin with the sufficiency of conditions (i) and (ii) in
Theorem 1. Note first that, if 7€ #, then

fhzzﬂ(h,O)zzf h

Q Q)
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by (2.1), and so

LMO h= LZO h. (3.1)

Now suppose that (i) and (ii) hold. By Lemma 2, applied to s — /*, either
(I) s—h*=0 on Q,, or
(IT) s—h*<0 on Q,.

Let E. =E_ (s—h*), etc. If (1) holds, then E, = Q\Q, and E_ = ¢ by
(i1), so that for every he #,

L_ h—jE+ h+jE0 \h| = —L+ h+fEO\QO Ih| +L20 1A
> —jE+ h—jEO\QOthfQO Ih|

= —j@\%hﬂ% 1] >0,

by (3.1). Hence (2.2) holds.
If (II) holds, then £_ =&, by (ii). Hence, for every he #,

_JEihz—JEWEOhg _fE+h+on Il

by (3.1), and again (2.2) holds.
It now follows from Lemma 1 that 4* is a best harmonic L'-approxi-
mant to s.

3.2. It remains to demonstrate the necessity of (i) and (ii). Let 2* be
a best harmonic L'-approximant to s. By considering s —/* instead of s,
we may suppose that 0 is a best harmonic L'-approximant to s. Clearly
EosT)=Eys)VE_(s), E.(s*)=E_(s) and E_(s*)= . Thus, for each
he A,

fE,(s*)h_jE+(S*)h +IE(S*) 1Al = _fE+(S) h+jE,(S) 1 +JE(S) g

0’ 0'
> —fE h+fE_(S)h+L(S) 1A
=0,

+() i
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by Lemma 1. Hence, again by Lemma 1, the function 0 is a best harmonic
L'-approximant to s+ e€.%. By the implication “(a)=-(b)” in the proposi-
tion, applied to s¥,

QoS Eyst)=Ey(s) U E_(s).

In particular, s <0 on 0Q2,. Hence, by Lemma 2, either

(I) s=0o0n Q,, or
(IT) s<0 on Q,.

In case (I) we apply the implication “(b)=>(a)” in the proposition to see
that s >0 on Q, so conditions (i) and (ii) hold.
To deal with case (I1), choose he # so that .#(h,t)= —1 for each
e(—1,1); for example, we can take /& to be a suitable multiple of the
Poisson kernel for (—2, +o0) x R"~! with pole (—2,0, ..., 0):

h(t,x")= —ct{|X'|>+(t+2)*} > (1> —=2;x'eR"71).

Applying (2.2) with 4* =0 we obtain

E (s)v Eo(s)

so that equality holds throughout. Hence s>0 almost everywhere on
Q\Q,, and therefore, by continuity, s >0 on Q\Q,. Since s <0 on Q,, we
have s =0 on 0Q, by continuity. Thus (i) and (ii) again hold.

3.3. Corollary 1 follows easily, since by Theorem 1 any two best
harmonic L'-approximants to se.¥ must agree on 02,, and hence on Q,
by Lemma 2, and thus on all of Q. Also, if 4* is the best harmonic
L'-approximant to s, then s —/#* =0 on 0Q,, and hence s —h* <0 on Q,
by Lemma 2 again.

To prove Corollary 2, observe that, by Theorem 1 and Corollary 1,
s—h*<0 on 2, and s—Ah* >0 on 2\Q,, and hence

ls=h*lh=] s+ ] (s—i),

2\,

so that the result follows by (3.1).

In Corollary 3 we have i =5, on 9Q, and h} <s, on Q\Q, (k=1,2),
SO hif +h¥=s,+5,0n0Q,and hif +h¥<s,+s, on Q\Q, and (i) follows.
Further,

S1+8,— (hif+hF)<s;,—hf<0 on 2,
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by Corollary 1, and
si+s,—(hF+hf)=s,—hf=0 on 2\Q,,

so (i1) also holds.

4. PROOF OF THEOREM 2.
4.1. We need the following lemmas.

LeEmMMA 5. Let s€ % and u*e. Then u* is a best superharmonic
L'-approximant to s on Q if and only if

Je 7,

for every ueu.

(u—u*)+j lu—u*[>0 (41)

L(s—u*) Ey(s —u*)

LEMMA 6. If ue, then
f u<j u and J u<24(u,0).
2\, 2, 2

Further, in each of these inequalities, equality holds if and only if ue #.

Lemma 5 is a special case of [ 12, Theorem 4.5.3]; it depends on the fact
that % is a convex set.

The proof of Lemma 6 depends on the fact that if ue %, then .#(u, -) is
concave on (—1, 1), and is affine if and only if ue # (see, for example,
[1]). This implies that the function

D(t)y=M(u, t)+ M(u, —1t) (0<r<1)

is decreasing on [0, 1), and is constant if and only if u € #. Hence
1/2 12
j u=j Bt +1) dzgj @(1) dz:j u
a2\, 0 0 Q,
and
1
j uzj ®(t) dt < D(0) = 2.4(u, 0),
Io) 0

with equality in each case if and only if ue #.
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4.2. We begin the proof of Theorem 2 by showing that if s€ ¥ has a
best harmonic L'-approximant u*, then u* is also a best superharmonic
L'-approximant to s. Without loss of generality we may assume that
u*=0. By Theorem 1 and Lemma 2, s >0 on Q\Q, and either

(I) s=0o0n Q,, or
(IT) s<0 on Q,.

It is enough in each case to show that (4.1) holds for every ue .
In case (I), E_(s)= and Q, < E(s). Hence

—j u—i—f |u|>—f u—i—j uz=0
E,(s) Eyls) a\Q, 2

by Lemma 6. Hence (4.1) holds.
In case (II), E_ =, so by Lemma 6,

RS S
E_(s) 2, a\Q, E (s) U Eys)

> f u— j lul,
E (s Eq(s)

so that (4.1) again holds.

4.3. Now suppose that u* e is a best superharmonic L!-approxi-
mant to s and that u* ¢ »#. We will show that this leads to a contradiction.
Since u* ¢ #, the Riesz measure u associated with u* is not the zero
measure. Let K be a compact subset of Q2 such that u(K)>0, and let uf
be the Green potential on Q with Riesz measure u|g. Then uif € C(Q)
since u* € C(R), and u} has a continuous extension to £, given by defining
uf=0 on 0Q. Also, since Gg(x, y), the Green function for Q, decays
exponentially as ||y| — + oo, uniformly for x in K (see [6]), it follows that
uj also decays exponentially and therefore uj* € L'(Q). Thus ujf € %. Now
define s; =5 — (u* —uf¥). Then u* —uf € and s, € ¥, and uf is a best
superharmonic L!-approximant to s,.

It follows that 0 is a best superharmonic L!-approximant to s; —uj =
s—u*, and therefore 0 is a best harmonic L'-approximant to s, —uj. By
Theorem 1 and Lemma 2, s, >uj* on Q\Q, and either

(I) s;—uf=0on Q,, or

(IT) s;—uf<0on Q.
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We write £, =E  (s; —uf), etc. In case (1), E_ = ¢ and Q, = E,. Since
¥ ¢ A, it follows from Lemma 6 that

Let

=;<2,/%(u;k,0)—f_ u;'<>. (4.2)

Since s; =uf on E,, we have uif € #((E,)°). Let K(r) be the compact
cylinder defined in Section 2.6, and choose r so that K< (K(r))°. Define
F=E, U (Q\K(r)). Then u} € L*(F) n #(F°) for each p>1. By Lemma 4,
there is a function H, harmonic on R” except for isolated singularities in
R"\F, such that

j \H—ut|<e. (4.3)
F

Since Q\K(r) S F, only finitely many singularities of H lie in Q, and these
singularities also lie in E . Since, by Lemma 2, each component of E
meets 0Q, it follows from [4, Lemma 4.1] that there exists 4 € # such that

j \h—H| <e. (4.4)
Ey

Since Q, < E,, we see from (2.1), (4.3), and (4.4) that

|t (h, 0) — M (uF, 0)] = L (h—u¥)| <2e. (4.5)
Now
J, =)= =ty = | =)
> | (h—ut) =2 (by (43), (44))

—2.4(h, 0) —L?ul* —2  (by(21))



282 DAVID H. ARMITAGE

Q

>2.4(uf, 0) —4g—j u¥—2¢  (by(45))

=2e>| |h—uf¥|, (by (4.2)—-(4.4)),

Ey

contradicting Lemma 5.

In case (II), E_=Q,. Taking u=0 in (4.1) we obtain

J <]
E_ E

uf= ui"éj uf
L UE, a\Q, E_

(the last inequality follows from Lemma 6). Hence

| ur=] ur,
a2\Q, Q,

and so uf € # by Lemma 6. This contradicts our construction of u{.

We now have a contradiction in each case, so u* € # as required.

REFERENCES

. D. H. Armitage and S. J. Gardiner, The growth of the hyperplane mean of a subharmonic
function, J. London Math. Soc. (2) 36 (1987), 501-512.

. D. H. Armitage, S. J. Gardiner, W. Haussmann, and L. Rogge, Characterization of best
harmonic and superharmonic L!-approximants, J. Reine Angew. Math. 478 (1996), 1-15.

. D. H. Armitage and M. Goldstein, Quadrature and harmonic L'-approximation in annuli,
Trans. Amer. Math. Soc. 312 (1989), 141-154.

. D. H. Armitage and M. Goldstein, Better than uniform approximation on closed sets by
harmonic functions with singularities, Proc. London Math. Soc. (3) 60 (1990), 319-343.

. D. H. Armitage and M. Goldstein, Quadrature and harmonic approximation of subhar-
monic functions in strips, J. London Math. Soc. (2) 46 (1992), 171-179.

. F. T. Brawn, The Green and Poisson kernels for the strip R”x ]0, I[, J. London Math.
Soc. (2) 2 (1970), 439-454.

. J. L. Doob, “Classical Potential Theory and Its Probabilistic Counterpart,” Springer-
Verlag, New York, 1983.

. S. J. Gardiner, “Harmonic Approximation” LMS Lecture Notes 221, Cambridge Univ.
Press, Cambridge, 1995.

. M. Goldstein, W. Haussmann, and K. Jetter, Best harmonic L!-approximation to subhar-
monic functions, J. London Math. Soc. (2) 30 (1984), 257-264.

. M. Goldstein, W. Haussmann, and L. Rogge, On the mean value property of harmonic
functions and best harmonic L'-approximation, Trans. Amer. Math. Soc. 305 (1988),
505-515.



BEST HARMONIC L'-APPROXIMANTS 283

11. L. I. Hedberg, Approximation in the mean by solutions of elliptic equations, Duke
Math. J. 40 (1973), 9-16.

12. P. Kosmol, “Optimierung und Approximation,” de Gruyter, Berlin, 1991.

13. J. C. Polking, Approximation in L? by solutions of elliptic partial differential equations,
Amer. J. Math. 94 (1972), 1231-1244.

14. 1. Singer, “Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces,”
Springer-Verlag, Berlin, 1970.



	1. INTRODUCTION AND RESULTS 
	2. A KEY RESULT 
	3. PROOF OF THEOREM 1 AND COROLLARIES 
	4. PROOF OF THEOREM 2 
	REFERENCES 

